Напиток из ракетного топлива

Интересно, на какую планету доставит вас этот коктейль?


Состав:
Водка Absolut — 15 мл
Текила серебряная Olmeca Blanco — 15 мл
Джин Beefeater — 15 мл
Ром белый Havana Club Anejo Blanco — 15 мл
Спрайт — 50 мл

Приготовление:
1. Наполните рокс доверху кубиками льда.

2. Налейте водку, джин, ром, текилу и спрайт.

Это может показаться странным, но спирт и космонавтика имеют долгую историю взаимоотношений. В этом ролике узнаете, почему.


И многие из нас считают тебя не очень хорошим человеком, потому что.

А вот кто именно и за что ты узнаешь в следующем комментарии!

Старт "Союза"

Тридцать два сопла порождают завораживающе красивую картину истечения реактивных струй. Как устроены эти струи и почему они имеют такую сложную форму?


В ракетном двигателе топливо, сжигаемое в камере сгорания, превращается в очень горячий сжатый газ, который вылетает через сопло, создавая реактивную силу тяги. В жидкостных ракетных двигателях горючее и окислитель (топливная пара) подаются под большим давлением в форсунки, расположенные в начале камеры сгорания. Смешивая компоненты, форсунки распыляют топливо в камеру сгорания, где в процессе горения происходит преобразование запасенной в топливе химической энергии в энергию сжатия и тепла. Получившийся раскаленный газ устремляется в реактивное сопло. Сужающаяся дозвуковая часть сопла ускоряет поток, и в самой узкой части сопла — критическом сечении — он приобретает скорость звука. Далее поток оказывается в расширяющейся части, становится сверхзвуковым и продолжает разгоняться до самого среза сопла. Истечение этой струи порождает реактивную силу в обратном направлении: она составляет основную часть силы тяги двигателя. Тяга всех двигателей складывается в тягу ступени, разгоняющую ракету. Двигатели РД-107 имеют четыре основные камеры сгорания и две небольшие рулевые камеры, у центрального РД-108 четыре основные и четыре рулевые камеры. Горючим для них служит керосин, а окислителем — жидкий кислород.


Схема работы жидкостного ракетного двигателя

Итак, из сопел ракетного двигателя вырываются раскаленные газовые струи. Но что именно мы видим как языки яркого пламени? Кажется, что они вылетают изнутри сопел, но это не так: пламя возникает только на срезе сопла, и чуть ниже мы разберемся, как это происходит. Вообще, такое яркое пламя наблюдается только на Земле (точнее, в кислородной атмосфере). Если бы можно было посмотреть на старт аналогичной ракеты с любого другого тела Солнечной системы, то были бы видны только бледные тусклые струи — и никакого слепящего огня. Всё дело в догорании в земной атмосфере остатков керосина и сажи, образовавшейся в камере сгорания.


Хорошо заметно, что сразу после выхода из сопла струи начинают сужаться. Это значит, что струя выходит наружу перерасширенной. Двигаясь в сверхзвуковой части реактивного сопла, поток газа расширяется и разгоняется, но при этом падают его температура и давление. Расширение сильное, в 19 раз (степень расширения — это отношение площади среза сопла к площади критического сечения). Из-за этого давление на срезе сопла составляет около 0,4 атм, и окружающий воздух (у которого давление равно 1 атм) обжимает струю, сужая ее.

На высоте около десяти километров давление на срезе сопла сравняется с атмосферным и струя станет выходить ровно, строго цилиндрически. Это расчетный режим истечения, оптимальный с точки зрения газодинамики, поскольку нет ни стартового перерасширения (при котором атмосфера создает на срезе сопла встречный потоку перепад давления, противодействующий истечению), ни высотного недорасширения. Недорасширение начнется на больших высотах: там атмосферное давление еще ниже, поэтому давление струи на срезе сопла станет больше атмосферного. Из-за этого она продолжит расширяться за соплом, но полезную работу без контакта со стенкой сопла совершать уже не будет.


При сжатии струи в прямом скачке уплотнения давление увеличивается и может слегка превысить атмосферное. Тогда за диском Маха струя немного расширяется, при этом разгоняясь. Расширение переходит в перерасширение, вызывающее сужение потока и формирование нового диска Маха. Этот циклический процесс порождает цепочку сужений. На каждом из них происходит небольшая потеря энергии, и в целом струя постепенно замедляется. Но из-за того, что на выходе из сопла скорость струи в несколько раз превышает скорость звука, успевает сформироваться целая серия дисков Маха. Они возникают до тех пор, пока потеря скорости в уплотнениях и рассеивание энергии поверхностью струи не замедлят ее до дозвукового течения и турбулентного перемешивания с окружающим воздухом.

Таким образом, находясь внутри сопла струя всё время ускоряется, а после выхода из него она тормозится атмосферой. На срезе сопла скорость струи достигает 3 км/с. Это соответствует значению числа Маха около 3 — из-за высокой температуры скорость звука в этих условиях равна примерно 1 км/с. При диаметре основных сопел 0,7 метра расстояние до первого сужения струи — примерно метр. Поток преодолевает его за 0,0003 секунды.

Если присмотреться (лучше всего смотреть на увеличенные версии первой и второй фотографий), то можно заметить, что светлые полосы и волокна на реактивных струях не идеально ровные: на них есть небольшие искривления, утолщения и неровности. Прикидки расстояний в предыдущем абзаце помогают оценить, что характерная длина этих искривлений — дециметры. Это значит, что время их существования (то есть время прохождения их длины потоком) имеет порядок 0,0001 секунды. Они всё время возникают вновь, поэтому можно считать, что это периодический процесс с частотой 10 кГц (10 000 раз в секунду). Он происходит на поверхности сверхзвуковых потоков большой мощности с непростой формой — всё это создает сложную резонансную картину высокочастотного акустического излучения и звукового давления. От нее не только можно оглохнуть — этот звук настолько мощен, что даже массивные ферменные конструкции старта сотрясаются плотной частой дрожью. Ну а нам повезло, и за уши можно не волноваться — звук к тексту не прилагается, но зато в неровных изгибах светлых линий на реактивных струях непосредственно видно проявление акустических колебаний.


При неполном сгорании образуется не свободный углерод, а угарный газ (CO). Его реакция с атмосферным кислородом визуально напоминает голубое пламя газовой плиты. Поэтому диметилгидразиновое пламя всегда бледное, прозрачное и похоже на пламя спиртовки, а струи на выходе из сопла светятся слабо. Догорающий на поверхности струй CO в невысоких концентрациях дает легкое бледное свечение, не заслоняющее внутренность струи. Благодаря этому хорошо различимы белесые конусы вершиной против потока — проявления сверхзвуковых скачков уплотнения в струе. В реактивных струях керосиновых двигателей они скрыты за ярким горением остатков горючего.



Исторически первым ракетным топливом послужил дымный порох, состоящий из смеси селитры (окислителя), древесного угля (горючего) и серы (связующего), который впервые был использован в китайских ракетах во 2 веке н.э. Боеприпасы с ракетным двигателем твердого топлива (РДТТ) применялись в военном деле как зажигательное и сигнальное средство.


После изобретения в конце XIX века бездымного пороха на его основе было разработано однокомпонентное баллиститное топливо, состоящее из твердого раствора нитроцеллюлозы (горючего) в нитроглицерине (окислителе). Баллиститное топливо обладает кратно большей энергетикой по сравнению с дымным порохом, имеет высокую механическую прочность, хорошо формуется, длительно сохраняет химическую стабильность при хранении, обладает низкой себестоимостью. Эти качества предопределили широкое использование баллиститного топлива в наиболее массовых боеприпасах, оснащенных РДТТ – реактивных снарядах и гранатах.


После Второй мировой войны ракетное оружие получило приоритет в развитии по сравнению с другими видами вооружения по причине своей способности доставлять к цели ядерные заряды на любое расстояние – от нескольких километров (реактивные системы) до межконтинентальной дальности (баллистические ракеты). Кроме того, ракетное оружие существенно потеснило артиллерийское в авиации, ПВО, сухопутных войсках и на флоте за счет отсутствия силы отдачи при пуске боеприпасов с ракетными двигателями.


Одновременно с баллиститным и жидким ракетным топливом развивались многокомпонентные смесевые твердые топлива, как наиболее приспособленные к применению в военных целях в связи с их широким температурным диапазоном эксплуатации, устранением опасности разлива компонентов, меньшей стоимости твердотопливных ракетных двигателей за счет отсутствия в их конструкции трубопроводов, клапанов и насосов, большей тягой на единицу веса.

Кроме агрегатного состояния своих компонентов, ракетные топлива характеризуются следующими показателями:

— удельный импульс тяги;
— термическая стабильность;
— химическая стабильность;
— биологическая токсичность;
— плотность;
— дымность.

Удельный импульс тяги ракетных топлив зависит от давления и температуры в камере сгорания двигателя, а также молекулярного состава продуктов сгорания. Кроме того, удельный импульс зависит от степени расширения сопла двигателя, но это больше относится к внешней среде применения ракетной техники (воздушная атмосфера или космическое пространство).


Повышенное давление обеспечивается с помощью использования конструкционных материалов с высокой прочностью (стальных сплавов для ЖРД и органопластиков для РДТТ). В этом аспекте ЖРД опережают РДТТ по причине компактности своего двигательного агрегата по сравнению с корпусом твердотопливного двигателя, являющегося одной большой камерой сгорания.

Высокая температура продуктов сгорания достигается с помощью добавления в твердое топливо металлического алюминия или химического соединения – гидрида алюминия. Жидкое топливо может использовать подобные добавки только в случае его загущения специальными добавками. Теплозащита ЖРД обеспечивается с помощью охлаждения топливом, теплозащита РДТТ – с помощью прочного скрепления топливной шашки со стенками двигателя и применения выгорающих вкладышей из углерод-углеродного композита в критическом сечении сопла.


Молекулярный состав продуктов сгорания/разложения топлива влияет на скорость истечения и их агрегатное состояние на срезе сопла. Чем меньше вес молекул, тем больше скорость истечения: наиболее предпочтительными продуктами сгорания являются молекулы воды, за ними следуют молекулы азота, углекислого газа, окислы хлора и других галогенов; наименее предпочтительным является окисел алюминия, который конденсируется в сопле двигателя до твердого состояния, снижая тем самым объем расширяющихся газов. Кроме того, фракция окисла алюминия вынуждает применять сопла конической формы из-за абразивного износа наиболее эффективных сопел Лаваля с параболической поверхностью.



Термическая стабильность твердых топлив в основном определяется соответствующим свойством растворителя и полимерного связующего. В составе баллиститных топлив растворителем является нитроглицерин, который в твердом растворе с нитроцеллюлозой имеет температурный диапазон эксплуатации от минус до плюс 50°C. В смесевых топливах в качестве полимерного связующего используются различные синтетические каучуки с тем же температурным диапазоном эксплуатации. Однако термическая стабильность основных компонентов твердого топлива (динитрамид аммония +97°C, гидрид алюминия +105°C, нитроцеллюлоза +160°C, перхлорат аммония и октоген +200°C) значительно превышает аналогичное свойство известных связующих, в связи с чем актуальным является поиск их новых составов.

Наиболее химически стабильной является топливная пара АТ+НДМГ, поскольку для неё разработана уникальная отечественная технология ампулизированного хранения в алюминиевых баках под небольшим избыточным давлением азота в течение практически неограниченного времени. Все твердые топлива со временем химически деградируют из-за самопроизвольного разложения полимеров и их технологических растворителей, после чего олигомеры вступают в химические реакции с другими, более стойкими компонентами топлива. Поэтому шашки РДТТ нуждаются в регулярной замене.

Биологически токсичным компонентом ракетных топлив является НДМГ, который поражает центральную нервную систему, слизистые оболочки глаз и пищеварительного тракта человека, провоцирует раковые заболевания. В связи с этим работа с НДМГ ведется в изолирующих костюмах химзащиты с применением автономных дыхательных аппаратов.

Величина плотности топлива прямо влияет на массу топливных баков ЖРД и корпуса РДТТ: чем больше плотность, тем меньше паразитная масса ракеты. Наименьшая плотность у топливной пары водород+кислород — 0,34 г/куб. см, у пары керосин+кислород плотность составляет 1,09 г/куб. см, АТ+НДМГ – 1,19 г/куб. см, нитроцеллюлоза+нитроглицерин – 1,62 г/куб. см, алюминий/гидрид алюминия + перхлорат/динитрамид аммония – 1,7 г/куб.см, октоген+перхлорат аммония – 1,9 г/куб. см. При этом надо учитывать, что у РДТТ осевого горения плотность топливного заряда примерно в два раза меньше плотности топлива из-за звездообразного сечения канала горения, применяемого с целью поддержания постоянного давления в камере сгорания вне зависимости от степени выгорания топлива. То же самое относится к баллиститным топливам, которые формируются в виде набора лент или шашек для сокращения времени горения и дистанции разгона реактивных снарядов и ракет. В отличии от них плотность топливного заряда в РДТТ торцевого горения на основе октогена совпадает с указанной для него максимальной плотностью.


Последним из основных характеристик ракетных топлив является дымность продуктов сгорания, визуально демаскирующих полет ракет и реактивных снарядов. Указанный признак присущ твердым топливам, содержащим в своем составе алюминий, окислы которого конденсируются до твердого состояния в процессе расширения в сопле ракетного двигателя. Поэтому указанные топлива применяются в РДТТ баллистических ракет, активный участок траектории которых находится вне зоны прямой видимости противника. Авиационные ракеты снаряжаются топливом на основе октогена и перхлората аммония, реактивные снаряды, гранаты и противотанковые ракеты – баллиститным топливом.

Для сравнения энергетических возможностей различных видов ракетного топлива необходимо задать для них сопоставимые условия горения в виде давления в камере сгорания и степени расширения сопла ракетного двигателя – например, 150 атмосфер и 300-кратное расширение. Тогда для топливных пар/троек удельный импульс составит:

кислород+водород – 4,4 км/с;
кислород+керосин – 3,4 км/с;
АТ+НДМГ – 3,3 км/с;
динитрамид аммония + гидрид водорода + октоген – 3,2 км/с;
перхлорат аммония + алюминий + октоген – 3,1 км/с;
перхлорат аммония + октоген – 2,9 км/с;
нитроцеллюлоза + нитроглицерин – 2,5 км/с.



окислитель – динитрамид аммония, 58%;
горючее – гидрид алюминия, 27%;
пластификатор – нитроизобутилтринитратглицерин, 11,25%;
связующее — полибутадиеннитрильный каучук, 2,25%;
отвердитель – сера, 1,49%;
стабилизатор горения — ультрадисперсный алюминий, 0,01%;
добавки – сажа, лецитин и т.д.

Основными направлениями развития жидких ракетных топлив являются (в порядке очередности реализации):

— использование переохлажденного кислорода с целью увеличения плотности окислителя;
— переход к топливной паре кислород+метан, горючий компонент которой обладает на 15% большей энергетикой и в 6 раз лучшей теплоемкостью, чем керосин с учетом того, что алюминиевые баки при температуре жидкого метана упрочняются;
— добавление озона в состав кислорода на уровне 24% с целью повышения температуры кипения и энергетики окислителя (большая доля озона является взрывоопасной);
— использование тиксотропного (загущенного) топлива, компоненты которого содержат взвеси из пентаборана, пентафторида, металлов или их гидридов.

Переохлажденный кислород уже используется в ракете-носителе Falcon 9, ЖРД на топливной паре кислород+метан разрабатываются в России и США.


Другим перспективным направлением является расширение номенклатуры используемых нитраминных взрывчатых веществ, обладающих большим кислородным балансом по сравнению с октогеном (минус 22%). В первую очередь это гексанитрогексаазаизовюрцитан (Cl-20, кислородный баланс минус 10%) и октанитрокубан (нулевой кислородный баланс), перспективы применения которых зависят от снижения стоимости их производства – в настоящее время Cl-20 на порядок дороже октогена, октонитрокубан на порядок дороже Cl-20.


Кроме совершенствования известных типов компонентов, исследования также ведутся в направлении создания полимерных соединений, молекулы которых состоят исключительно из атомов азота, соединенных между собой одинарными связями. В результате разложения полимерного соединения под действием нагрева азот образует простые молекулы из двух атомов, соединенных тройной связью. Выделяемая при этом энергия двукратно превышает энергию нитраминных ВВ. Впервые азотные соединения с алмазоподобной кристаллической решеткой были получены российскими и немецкими учеными в 2009 году в ходе экспериментов на совместной опытной установке под действием давления в 1 млн. атмосфер и температуры в 1725°C. В настоящее время ведутся работы по достижению метастабильного состояния азотных полимеров при обычных давлении и температуре.


Перспективными кислородсодержащими химическими соединениями являются высшие окислы азота. Известный оксид азота V (плоская молекула которого состоит из двух атомов азота и пяти атомов кислорода) не представляет практической ценности в виде компонента твердого топлива в связи с низкой температурой его плавления (32°C). Исследования в этом направлении ведутся путем поиска метода синтеза оксида азота VI (гексаоксид тетраазота), каркасная молекула которого имеет форму тетраэдра, в вершинах которого расположены четыре атома азота, связанных с шестью атомами кислорода, расположенными на ребрах тетраэдра. Полная замкнутость межатомных связей в молекуле оксида азота VI дает возможность прогнозировать для него повышенную термическую стабильность, сходную с уротропином. Кислородный баланс оксида азота VI (плюс 63%) позволяет существенно повысить удельный вес в составе твердого ракетного топлива таких высокоэнергетических компонентов, как металлы, гидриды металлов, нитрамины и углеводородные полимеры.

Заметили ош Ы бку Выделите текст и нажмите Ctrl+Enter

Исследователи под руководством бывшего главного технолога NASA надеются запустить спутник, работающий на воде в качестве источника топлива. Группа Корнелльского университета и Мейсон Пек хотят, чтобы их устройство стало первым CubeSat (это такие небольшие спутники размером с обувную коробку), который выйдет на орбиту Луны и при этом продемонстрирует потенциал воды в качестве источника топлива космического аппарата. Это безопасное и стабильное вещество весьма распространено даже в космосе и могло бы найти еще более широкое использование на Земле, раз уж мы ищем альтернативу ископаемому топливу.


Пока мы не разработаем варп-двигатель или другую футуристическую двигательную систему, наши космические путешествия, вероятно, в значительной степени будут зависеть от ракет на том топливе, которое распространено сейчас. Они работают за счет сжигания газа в задней части аппарата и за счет этого, благодаря законам физики, толкаются вперед. Такие двигательные системы для спутников должны быть легкими и переносить кучу энергии в небольшом пространстве (иметь высокую энергетическую плотность), чтобы непрерывно поддерживать аппарат на протяжении многих лет или даже десятилетий на орбите.

Первое опасение вызывает безопасность. Упаковка энергии в малом объеме и массе в форме топлива означает, что даже малейшая проблема приведет к катастрофическим последствиям вроде того, что мы видели с недавним взрывом ракеты SpaceX. Вывод спутников на орбиту с любой формой нестабильного топлива на борту может означать катастрофу для дорогостоящего оборудования, а может и для человеческой жизни, что еще хуже.

Вода может помочь нам обойти эту проблему, поскольку является по сути переносчиком энергии, а не топливом. Группа Корнелльского университета не планирует использовать воду в качестве топлива, а скорее использовать электричество от солнечных батарей для разделения воды на водород и кислород и использования их в качестве топлива. Эти два газа соединяются и становятся гремучей смесью, позволяя реализовать энергию, затраченную на расщепление воды. Сжигание этих газов можно использовать для движения спутника вперед, его разгона или изменения положения на орбите в зависимости от пункта назначения.

Солнечные батареи весьма надежны и не имеют движущихся частей, поэтому идеально подходят для функционирования в условиях микрогравитации и в экстремальных условиях космоса, чтобы производить ток из солнечного света. Традиционно эта энергия аккумулируется в батареях, но корнелльские ученые хотят использовать ее для расщепления воды на борту.

Предлагаемый процесс — известный как электролиз — включает пропускание тока через воду, как правило, содержащую немного растворимого электролита. Ток разбивает воду на кислород и водород, которые выделяются отдельно на двух электродах — на аноде и катоде. На Земле гравитация затем разделяет эти газы, и их можно использовать. Но в условиях невесомости, на спутнике потребуются центробежные силы от вращения для разделения газов из раствора.

Электролиз уже использовали в космосе раньше, чтобы обеспечить кислородом пилотируемые космические миссии и не забирать наверх кислородные резервуары под высоким давлением, например, на Международной космической станции. Но вместо того, чтобы отправлять воду в космос в виде груза на ракете, мы могли бы просто однажды добывать ее на Луне или на астероидах. Если новый подход использования водорода и кислорода для спутникового топлива окажется успешным, мы могли бы получить его готовый источник в космосе. Такой подход можно было бы применить к энергоснабжению космических аппаратов будущего.

Как это часто бывает, разработки в области космических технологий рождают идеи, которые можно применить и на Земле, особенно в решении существенных энергетических проблем. Электричество действительно сложно хранить, а по мере увеличения спроса на электроэнергию мы нуждаемся в прорывах. Ветер и солнечные фермы — не самые эффективные формы возобновляемой энергии, не из-за проблем с выработкой энергии, а из-за того, что мы зачастую не можем сделать ничего полезного с этой энергией. Электросети не справляются в периоды высокой выработки и низкого спроса на энергию.

Возможно, нам поможет использование излишков электроэнергии для расщепления воды на водород и кислород. Затем из водорода можно делать запасы, а при необходимости совмещать его с кислородом из атмосферы.


Ученые уже придумали или готовятся придумать много новых типов двигателей для космических кораблей. Самые смелые предположения даже говорят про варп-двигатель, который должен разгонять корабль до скоростей, в несколько раз превышающих скорость света за счет искривления пространства в мощном гравитационном поле. Пока это только фантастика, которая скоро может стать перспективой. Зато ионные двигатели уже существуют и […]


Космическая отрасль максимально консервативна. Это касается не только Роскосмоса, но и космических программ других стран. Только Илон Маск со своей SpaceX попробовал показать, что все может быть по-пижонски и у него получилось, но костюмы и дизайн кораблей в стиле фильма Интерстеллар это скорее исключение. В любом случае это больше внешняя оболочка. Внутри самой ракеты лежат […]


Тема железных дорог часто будоражит умы не только фанатов и любителей техники, но и простых людей. Все из-за того, что есть какая-то романтика в этих железных великанах. Ведь это как живые динозавры, которые были на заре зарождения транспорта и живы до сих пор. Некоторые машины, которые в свое время изменили представление человечества о том, как […]

При виде стартующей ракеты в голове крутятся разные мысли. От земли эта штуковина отрывается как-то натужно — того и гляди покосится и упадет. Раскрасить ее можно и поинтереснее, но спасибо, что на фюзеляже нет рекламы. А мы, люди, все-таки молодцы: приладили бочки к громадным трубам и запускаем внутри них всякую всячину в космос — это ведь надо было изловчиться. Что не приходит на ум, когда площадка космодрома скрывается в клубах дыма, так это горючее: вредное оно или нет, велик ли от него урон, кому из-за этого хуже всего. Но раз ученые, NASA и ракетостроители говорят о "зеленом" топливе, значит, обычное все же чем-то плохо.

Сам этот эпитет, "зеленое", напоминает о биодизеле из кукурузы и электричестве от ветряков и солнечных панелей, которые удовлетворяют наши потребности в энергии, но не разрушают природу так сильно, как уголь, нефть и газ. Тогда и в космической ракете сначала видится что-то вроде движка автомобиля, только громадного, а потому намного более опасного для окружающей среды. Например, в американской ракете Atlas V почти 600 т топлива ( в зависимости от конфигурации его может быть больше или меньше ), сгорающего буквально на глазах. Этого хватило бы, чтобы на машине обогнуть Землю по экватору где-то 200 раз.

Вот только на свете ездит около 1 млрд автомобилей, а космические запуски бывают не чаще, чем выходные дни: порядка одной сотни в год. Но главное — ракеты в принципе почти не выбрасывают парниковые газы (именно растущие концентрации этих газов в атмосфере и вызванное этим изменение климата служат главным стимулом для развития "чистой" энергетики). Как космические запуски влияют на окружающую среду, вообще толком не понятно, а "зеленое" топливо ищут прежде всего затем, чтобы удешевить и упростить подготовку к полету.

Какое бывает топливо

Первый космический аппарат, советский "Спутник-1", был запущен в октябре 1957-го. За прошедшие 62 года появились новые материалы с удивительными свойствами, производительность вычислительной техники выросла даже не в разы, а на порядки, спутники, зонды, орбитальные обсерватории позволили составить точнейшие карты планеты, разглядеть тела в Солнечной системе и саму Вселенную — и только ракеты, которые поднимают их с поверхности, почти не изменились.

Ракетный двигатель — это по сути цилиндр с топливом. В нем ничего не вращается, как в автомобиле. Вместо этого газы, образующиеся из-за горения, просто вырываются струей наружу, а ракета из-за возникшей тяги летит в противоположном направлении. Но как "просто" — поток газов должен быть достаточно мощным, чтобы корабль преодолел притяжение планеты. К примеру, Atlas V, где основным двигателем служит российский РД-180, по тяге почти в 60 раз превосходит самолет Boeing 737-300 . Добились этого благодаря конструкции — и топливу.

Ракетное топливо бывает твердое и жидкое. Твердое замешивают и выпекают в специальной форме, как пирог , а по консистенции оно напоминает ластик. Его можно хранить годами, если не десятилетиями, поэтому заправлять ракету перед стартом не нужно, и подготовка к старту сравнительно легкая. Но есть и недостатки. Во-первых, жидкое топливо той же массы обычно дает бо́льшую тягу. Во-вторых, стоит зажечь твердое топливо — оно сгорит до конца, как петарда.

С жидким горючим процесс регулируется. Оно представляет собой смесь собственно топлива и окислителя, которые накачиваются из отдельных баков и вступают в химическую реакцию с выделением тепла. Перекрой "кран" — пламя погаснет. Часто космические ракеты оснащены двигателями обоих типов: сначала включаются твердотопливные, которые быстро создают нужную тягу, потом в полете их сбрасывают, и в дело вступают более эффективные двигатели с жидким топливом. Также бывают гибридные установки, где в "пирог" вспрыскивают окислитель из изолированной емкости. Они позволяют контролировать химическую реакцию, но сохраняют и некоторые преимущества твердого горючего.

Вредит ли топливо

Одни ракеты заправляют тем, что называется топливом в обиходе: например, очищенным керосином или метаном, а окислителем служит сжиженный кислород. В этих ракетах происходят такие же реакции, как в двигателях внутреннего сгорания автомобилей: выделяется углекислый газ и водяной пар. И то и другое, усиливая парниковый эффект, поднимает среднюю температуру на планете, но десятки запусков в год погоды не делают.

В твердотопливных двигателях зачастую применяется перхлорат аммония и алюминиевая пудра. Из-за этого во время полета в воздух попадает едкая соляная кислота: один запуск европейской ракеты Ariane 5 дает до 270 т этого вещества. В масштабах всей атмосферы это опять-таки незначительное количество, но, как замечено в отчете Еврокомиссии, так можно сказать про все источники загрязнения, поэтому довод слабоват. С другой стороны, замеры, проведенные NASA в 1995 году после запуска ракеты Delta II, показали, что даже на краях стартовой площадки концентрация кислоты не повысилась; не пострадали и окрестные почвы.

Еще одно опасение обусловлено тем, что ракеты пролетают сквозь всю толщу атмосферы, поэтому в верхних слоях могут скапливаться частицы сажи и окислившегося алюминия. По прикидкам старшего проектного инженера некоммерческой организации Aerospace Corporation Мартина Росса, выбросы достигают 11 тыс. т в год. Эти частицы окутывают планету и удерживаются три-пять лет, но к чему это приводит, неясно.

По идее, черная сажа поглощает солнечное тепло и тем самым остужает планету, но из-за возросшей температуры над облаками может разрушиться озоновый слой, защищающий нас от радиации. Оксид алюминия, наоборот, белый, поэтому отражает солнечный свет обратно в космос и, предположительно, тоже понижает температуру атмосферы. А возможно, все наоборот, и из-за оксида алюминия становится жарче, потому что он не дает рассеяться теплу с Земли. К тому же, по словам Росса, на поверхности алюминиевых частиц тоже могут протекать химические реакции с расщеплением озона.

Впрочем, расчеты Всемирной метеорологической организации показывают, что ракетные запуски практически не сказываются на озоновом слое. Но как космические запуски будут влиять на атмосферу в будущем, ученые прогнозировать не берутся: слишком много переменных остаются неизвестными, а выводы в основном делаются по результатам лабораторных экспериментов и компьютерного моделирования. Как говорят в таких случаях, требуются дополнительные исследования.

Зачем полетит GPIM

Хотя любое ракетное топливо потенциально вредно, но на опытном аппарате GPIM (англ. Green Propellant Infusion Mission) испытают замену одному конкретному виду горючего — широко распространенному гидразину и его производным. Гидразин — сравнительно простое соединение, состоящее из двух атомов азота и четырех атомов водорода. С виду он похож на обыкновенную воду, у них почти одинаковые температуры плавления и кипения, плотность, поверхностное натяжение, но гидразин дымится на воздухе. И если из "водицы" идут сизые пары, это верный знак, что человеку нужно поскорее убираться!

Читайте также: