Какой спектр нужен для салата

Сообщение ИгоТемное » 12 май 2016, 14:04

Добрый день, граждане!
Почитал разные темы в этом разделе, какую-то информацию нашел, какую-то нет, и так как вопрос комплексный, решил, дабы не плодить кучу разных сообщений в куче разных тем, создать одну новую тему, затрагивающую все сразу.

Собственно суть такова:
Есть три вида растений: огурцы среднеплодные, томаты мясистые и салат типа Батавия.
Им всем надо обеспечить грамотное и по возможности интеллектуальное освещение.
Из некоторых тем этого форума я уже подчерпнул информацию про синий спектр 440-470нм, которого нужно больше на начальных стадиях роста растения, и больше красно-оранжевого спектра 620-680нм на позднем, когда уже пойдут плоды.
В связи со всем этим не могли бы достопочтенные знатоки прояснить следующие моменты:
-В каких пропорциях нужно подавать эти спектры на разных стадиях роста? Есть какая-нибудь информация, не как я написал, что тогда-то больше того-то, а тогда-то того-то, а какие-нибудь точные цифры?
-В некоторых источниках пишут что растениям полезно будет небольшое количество мягкого УФ и ИК диапазона. В других источниках пишут что и ИК и УФ в любых количествах для них вреден. Где же истина?
-Зеленый цвет не нужен вообще, или чуть чуть его все-же даст какой-то профит?
-Красный спектр вроде как в основном отвечает за плодоношение.. Значит ли это, что для салата красный спектр менее важен, и давать ему надо больше синего?
-Яркость света? Фотопериод? В "ночные" часы свет должен вообще выключаться, или просто ослабевать?
Пока все.)
Сразу скажу, температуры, влажности, удобрения и прочие переменные в данном случае не важны. Только свет, только спектры, только хардкор! =)
Заранее благодарю за ответы, если таковые будут! =)


Оптическое излучение (ОИ) является важным фактором роста и развития растений. Применение ОИ для выращивания растений при искусственном облучении (в светокультуре) допускает широкие возможности варьирования его параметрами: интенсивностью, продолжительностью, спектральным составом, что оказывает специфическое воздействие на фоторецепторы [9]. У растений под влиянием энергии ОИ наблюдается целый ряд физических эффектов, ведущих к регуляторным, адаптивным и другим процессам, вплоть до экспрессии генов. Единичные кванты ОИ, поглощаемые растительным организмом, запускают превращения морфофизиологического состояния растений [1]. Развитие аграрных теоретических знаний и практики производства продукции выявили необходимость создания энергоэффективных агротехнологии с минимальным негативным воздействием на окружающую среду, в основу которых должны быть положены наиболее важные достижения фундаментальных наук. Для светокультуры характерны существенные энергетические затраты, поэтому вопросы экологичности и энергоэффективности приобретают особую актуальность [4].

Традиционными источниками излучения (ИИ) для применения в светокультуре являются натриевые и люминесцентные лампы с различным спектром излучения, однако эти источники имеют недостатки – малый срок службы, высокую энергоемкость, недостаточную оптимальность распределения интенсивности излучения по длинам волн в диапазоне фотосинтетически активной радиации (ФАР) в диапазоне 400 – 700 нм. Альтернативным типом ИИ являются светодиоды. Для интенсификации промышленной светокультуры необходимы научное обоснование и разработка новых энергоэкономичных ИИ.

В качестве модельной культуры в данном исследовании выбран салат (Lactuca sativa L.) благодаря его быстрому росту и чувствительности к спектру ОИ. В хозяйственном плане салат пользуется большим спросом, особенно в зимний период. Это конкурентоспособная продукция, не требующая особых затрат, за исключением электроэнергии при выращивании с досвечиванием [7].

К настоящему времени накоплен большой эмпирический материал по выращиванию салата под ИИ с различным спектральным составом. Исследованиями ряда авторов установлено, что большая часть фотобиологических процессов в растениях наиболее активно проходит в синей и красной областях спектра. В зависимости от спектра излучения были обнаружены положительные физиологические, морфологические эффекты, выявлено повышенное содержание питательных веществ. Определены рекомендуемые сочетания энергии в различных диапазонах спектра [8]. Наблюдалась более высокая сухая масса у салата, выращенного под красным светом с добавлением синего, по сравнению с салатом, выращенном только под красным светом [10].

Важной мерой оценки пригодности света для светокультуры является величина потока ФАР. Для интенсивного фотосинтеза у растений необходимым является не только обеспечение общего количества энергии ОИ, но и соответствующего спектрального состава излучения. Для экономически обоснованного применения ИИ в светокультуре важной является и оценка их энергетической эффективности [2, 3, 5].

Цель исследований заключается в сравнительной оценке влияния соотношения потоков в красном и синем диапазонах ФАР на рост, развитие и качество салата.

Материалы и методы исследования

Экспериментальные исследования по выращиванию салата под излучателями на гидропонике проводили в условиях без доступа солнечного света. Салат – достаточного распространенная зеленная культура, обладающая ценными свойствами, содержит провитамин А-каротин, витамины С, В, Р, РР, К, Е и микроэлементы В, J, Zn, Mn, Cu и др. В салате содержится до 4,0 % сахаров, углеводов, минеральные соли составляют 7 – 19 % от сухого вещества. В России самым распространенным считаются листовые салаты сортотипа Батавия. Салат Афицион самый популярный светло-зеленый сорт [6].

Для выращивания салата методом гидропоники в качестве субстрата использовали верховой торф низкой степени разложения (10 %), кислый (рН 3,8), зольностью 10 %. Торф предварительно известковали агромелом с доведением кислотности до рН 6,2 и минерального состава до содержания, мг.л-1: азота – 230; фосфора – 50; калия – 250; кальция – 200; магния – 60. Питательный раствор для гидропонного выращивания салата в замкнутом цикле готовили из минеральных солей, используемых в промышленном тепличном овощеводстве с доведением содержания элементов питания в рабочем растворе, мг.л-1: азота – 162,5; фосфора – 28,8; калия – 231,2; кальция – 107,9; магния – 26,5 и необходимого количества микроэлементов.

Растения салата выращивали в пластиковых горшочках типа PR – 306 диаметром и высотой 5 см. Семена высевали в горшочки по 3 – 4 штуки (предварительно семена обрабатывали эпином). Выдерживали горшочки с семенами в темновом шкафу при температуре 22 °С и относительной влажности воздуха 93 – 95 % в течение 1,5 суток. Проросшие семена переносили под светильник с люминесцентными лампами с соотношением потоков в спектре kВ:kG:kR = 26 %:38 %:36 % (синего В – blue; зеленого G – green; красного R – red). Доля потока ближней инфракрасной зоны составляло 11,8 %.

В течение 14 дней рассаду салата выдерживали на рассадном столе при облученности 120 мкмоль.с-1.м-2 при круглосуточном досвечивании. На 15-й день после всходов горшочки с 2-я настоящими листочками переносили в рабочую зону и устанавливали в культивационные желоба под облучатели с различным спектром. Уровень облученности в течение периода выращивания поддерживали на уровне 140 мкмоль.с-1.м-2, за счет изменения высоты подвеса. Облучение проводили по 16 часов в сутки. Питательный раствор подавали автоматически в замкнутом цикле на лотки, на каждый стол отдельно. Электропроводность (ЕС) и уровень рН питательного раствора корректировали ежедневно и поддерживали на уровне 1,8 – 2,0 мсм.см-1 и 5,9 – 6,1 ед. соответственно.

Облучение растений салата в рабочей зоне осуществлялось двумя комбинированными облучателями с различными спектрами:

1) S1 – спектр, получаемый от излучения восьми люминесцентных ламп OSRAM L 58W/77 FLUORA (G13) и светодиодов синего цвета. Соотношение потоков в поддиапазонах ФАР kВ:kG:kR = 51 %:21 %:28 %, с наибольшей долей энергии в синем поддиапазоне с соотношением kR:kВ = 1:1,8.

2) S2 – спектр, получаемый от излучения восьми люминесцентных ламп OSRAM L 58W/77 FLUORA (G13) и светодиодов красного цвета. Соотношение потоков kВ:kG:kR = 32 %:22 %:46 %, с наибольшей долей энергии в красном поддиапазоне с соотношением kR:kВ = 1:0,7.

Использовали СД марки ARPL – Star, смонтированные на алюминиевом радиаторе. Питание светодиодов осуществлялось от блока питания ARS-480М-12, управляемых с помощью регулятора мощности МР301F.

Результаты исследования и их обсуждение

В табл. 1 показана динамика биометрических показателей растений салата: массы листьев, их количества и высоты растения.

Результаты сравнительного анализа влияния излучения на растения салата показали, что при спектре S2 наблюдались большие значения высоты растения салата, массы листьев и их количества. Продуктивность салата по массе листьев при спектре S2 была выше и составила 43,61 ± 0,41 г/горшочек по сравнению с 35,39 ± 2,26 г/горшочек при спектре S1.

В табл. 2 показаны показатели продуктивности и химический состав листьев салата на конец эксперимента.

Динамика биометрических показателей растений салата

Необходимое количество света для различных культур

Для хорошего роста любого растения, как в естественной, так и в искусственной среде, необходим свет. Для тепличных растений на ряду с количеством света, важно и его качество: спектр света и фотопериодизм (чередование освещения и затенённости).

Совет. Большинству растений необходимо в сутки не менее 12 часов освещения, поэтому при организации теплицы важно учитывать место её расположения: лучшим местом будет не затененное, открытое пространство.

Это условие необходимо соблюдать для того, чтобы в летнее время не прибегать к искусственному освещению, а в зимний период по максимуму использовать солнечный свет.

Томаты, огурцы и зелень относятся к светолюбивым растениям, поэтому в период холодов, когда сокращается длина светового дня, им необходимо организовать дополнительное освещение. Для каждой из этих культур, по мнению опытных селекционеров, необходимо обеспечить индивидуальные условия освещения:

  • для лука, зелени и салата дополнительное освещение необходимо только на начальных этапах развития;
  • для томатов освещение должно беспрерывно осуществляться в течение 12 часов;
  • для огурцов перерыва между естественным освещением и искусственным быть не должно – как и томатам, им требуется не менее 12 часов света.


Большинству растений необходимо до 12 часов освещения

Правильное освещение для огурцов и томатов

Дополнительно освещать огурцы и помидоры в условиях теплицы требуется уже на этапе первых всходов, чтобы ускорить сроки роста рассады и повысить урожайность. При этом для правильного протекания биологических процессов им необходимо обеспечивать не менее 6 часов полной темноты. Если не соблюдать это правило, то растение может начать отставать в росте и сбрасывать цветы.

На этапе вегетативного роста растения рекомендуется подсвечивать синим спектром света, а в период завязи плодов – красным. Также в зависимости от этапа развития, разным должно быть и количество света: на ранних стадиях лучше организовать освещение продолжительностью 20 часов, постепенно доводя его до 12 часов. Также при организации искусственного освещения необходимо учитывать мощность света: для растений диапазон излучения должен составлять от 400 до 700 нанометров.


В период завязи плодов растения подсвечивают красным спектром

Виды освещения для теплиц и их свойства

Для искусственного освещения теплиц можно использовать следующие виды ламп:

  • накаливания;
  • ртутные;
  • натриевые;
  • светодиодные;
  • люминесцентные.

Остановимся на каждом типе освещения подробнее.

Обычные лампы накаливания лучше не использовать в теплицах, поскольку их свет неблагоприятен для роста растений. К тому же, они не экономичны в использовании, и обладают низким спектром радиусного излучения. Для выращивания огурцов и помидоров они не подойдут: их сильный нагрев может оставить ожоги на листьях.

Ртутные лампы дают очень яркий свет и имеют длительный срок эксплуатации. Для выращивания огурцов они также не подходят, поскольку, как и лампы накаливания, очень быстро и сильно нагреваются во время работы.


Лампы не должны нагреваться при свечении

Натриевые лампы используются, в основном, в промышленных теплицах: их свет приближен к естественному, они имеют высокую степень отдачи жёлто-оранжевого спектра, а также обеспечивают дополнительный обогрев. Располагать их лучше подальше от растений, чтобы избежать ожогов. Они также не рекомендованы для выращивания огурцов и томатов, поскольку выделяют только красный свет, полезный лишь в период цветения.

Светодиодные лампы – это экологически безопасное освещение для теплиц современного типа. Их главными преимуществами являются следующие характеристики:

  • максимальная приближённость к солнечному свету;
  • долговечность эксплуатации (до 15 лет без замены);
  • устойчивость к перепадам температур и повышенной влажности;
  • устойчивы к механическим повреждениям.

Также одними из лучших ламп для освещения теплиц являются люминесцентные лампы: их свет очень мягкий, щадящий, во время работы они не нагреваются, создают благоприятный микроклимат, экономичны в эксплуатации и имеют низкую стоимость.

Для группы растений рекомендуется устанавливать лампы мощностью 50 Ватт, на высоте 40-60 см от верхушки. Если площадь теплицы большая, то лучше использовать лампы на 250 Ватт, и располагать их на высоте от 1 до 2 метров.


В большой теплице лампы располагаю на высоте 2-2,5 метров

При выборе искусственного освещения необходимо учитывать сразу несколько параметров:

  • культуры для выращивания;
  • площадь теплицы;
  • материал для ее изготовления;
  • тип освещения и его свойства.

Если дополнительное освещение организовано верно, то высокий урожай томатов и огурцов можно получить даже в зимнее время.


Много кто из цветоводов-садоводов, имеющих в своем «послужном списке» попытки выращивания рассады, стоял перед неприятной преградой для отличного урожая в виде "вытягивания" рассады (особенно актуально при посеве весной в условиях отсутствия хорошей освещенности).

Давайте разберемся в причинах проблемы и найдем пути для ее устранения.
Сначала немного теории.

Спектр дневного света

Со школьной скамьи все знают, что фраза « К аждый О хотник Ж елает З нать - Г де С идит Ф азан» предоставляет список цветов в обратном порядке (справа - налево), на которые раскладывается луч света при преломлении

Видео о влиянии спектра света на рост растений.

Для цвета или спектральной составляющей главной характеристикой является длина волны, измерением которой производится в нанометрах. Белый цвет характеризуется длиной волны, равной 400 — 800 нм. В частотном диапазоне фиолетовый цвет находится внизу (короткие волны, 400 нм), а красный вверху (длинные волны, 800 нм). В первом случае имеем дело с ультрафиолетовым излучением, во втором с инфракрасным излучением ). Хотелось бы заметить сразу, что в случае с растениями красный цвет делится на просто красный (660 нм) и дальний красный (730 нм ), причем оба имеют важное значение.

Возникает логичный вопрос: почему дневной свет белый, а окружающий нас мир цветной ? Почему предметы, явления, объекты имеют тот или иной цвет ?
Ответ предельно прост: если частицы непрозрачного предмета обладают свойством отражения, например, красного цвета и поглощения других цветов, то предмет будет красным. Точно так же дело обстоит и с другими цветами.

Фотосинтез

Давайте рассмотрим процесс жизнедеятельности взрослого растущего зеленого растения. Обязательными условиями для существования являются: солнце, воздух и вода (а также минеральное питание из почвы).
Солнечный дает растению необходимую энергию, воздух (а точнее диоксид углерода, т.е. углекислый газ)—углерод, главный строительный материал,а вода—кислород, содержащийся в ней на молекулярном уровне.

В результате взаимодействия перечисленных трех компонентов в процессе фотосинтеза при помощи специального пигмента хлорофилла образуются органические соединения—углеводы.

При свете дня происходит разделение воды на кислород и водород, а также запасание энергии.
В ночной же темноте благодаря запасам энергии наблюдается соединение углекислого газа с водородом, что имеет следствием образование углеводов.

Важной деталью является то, что кислородом, выделяющимся при дневной фазе фотосинтеза дышат все живые существа на земле.

Фотоморфогенез

Фотоморфогенез—это совокупность процессов, которые можно наблюдать в растении под воздействием освещения, которому характерны разнообразная спектральный состав и интенсивность.
В данном случае свет является не столько источником энергии, сколько сигнальным средством, которое регулирует процессы жизнедеятельности растения, в частности, рост и развитие.
Это можно сравнить с работой светофора на перекрестке. Разве что в управлении задействованы не красный- желтый-зеленый, а иные цвета: синий, красный и дальний красный.

Рассмотри процесс прорастания семени более внимательно.
Проснувшись в темном грунте, семя начинают прорастать, стремясь вверх, к солнцу.
Следует заметить, что даже посеянные поверхностно семена и вообще рассада, стоящая на светлом месте делает скачок в росте исключительно в ночное время суток, в темноте. Именно поэтому любоваться массовыми всходами можно лишь по утрам.

Однако, снова взглянув и понаблюдав за нашим целеустремленным ростком, стремящимся на поверхность, можно заметить интересную особенность: он будет интенсивно расти до того момента ,пока не получит знак-сигнал от природы «Можно сбавить темп, ты уже на поверхности, значит выживешь».
Этим уведомлением для него служит не воздух, влага или сейсмические колебания, а кратковременный импульс красного излучения (приходит на ум мысль ,что соответствующий сигнал светофора люди позаимствовали у природы).

До получения светового сообщения росток будет находится в этиолированном состоянии, для которого характерны бледноватый вид и крючкообразная форма.

Наблюдаемый крючок —это не что иное, как эпикотиль или гипокотиль, т.е. способ защиты почечки (точки роста), нужной в его непростом пути к солнцу.

Вышеописанное состояние будет сохранятся до того времени, пока рост продолжается в темноте.
Для того, чтобы вывести растение из этого состояния следует проводить ежедневное кратковременное освещение длительностью 5-10 мин.

Красный цвет

Давайте подробнее рассмотрим причины описанного явления. Оказывается, что помимо хлорофилла, каждое растение содержит в себе еще один чрезвычайно важный пигмент—фитохром, белок многократно усиливающий способность растения улавливать свет и его спектральные оттенки.
Отличительной чертой фитохрома является то, что он способен принимать две формы, которые отличаются друг от друга, и зависят от воздействия красного света (660 нм) и дальнего красного света (730 нм) соответственно. Поэтому поочередное облучение 2 типами красного света равнозначно манипулированию переключателем, имеющим значения «вкл/выкл».

Именно описанные черты фитохрома отвечают за соблюдение «режима дня» растениями и управлением периодичностью жизненных циклов.
Кроме того, за цветение растений также отвечает этот пигмент. Ну и как уважаемый читатель уже мог догадаться, теневыносливость и светолюбивость растений также связаны с фитохромом.

Теперь становится понятен принцип явления, благодаря которому в нашем ростке, оказавшемся на поверхности и получившем даже кратковременную долю освещения, запускается процесс деэтиоляции.
Все это происходит благодаря лучам обычного красного света, которых в в дневных солнечных лучах значительно больше, нежели дальнего красного.

Пытливый садовод-любитель непременно задастся вопросом, как же различить 2 вида красного света ?
Ответ предельно прост. Как всем известно, красный свет граничит с инфракрасным, т.е. тепловым излучением, а значит чем «теплее» свет по восприятию кожей, тем он более превалирует в нем дальних красных лучей.
Представление об описанном свойстве можно получить просто поднеся руку к обычной лампе накаливания, а затем к более «холодной» люминесцентной лампой дневного света.

Синий свет

Прояснив ситуацию с красным светом, давайте расставим точки над i с вопросом синего света—нашим фазаном из приведенной детской считалки в начале статьи, которые непосредственно воплощают фиолетово-синюю часть спектра—и выясним, как же он влияет на жизнедеятельность растений.
Следует заметить, что наличие или отсутствие желто-зеленого цвета никак не влияет на развитие растения.

Итак, синий свет имеет крайне важное значение, потому как он содержит в себе другой пигмент—криптохром, который очень чувствителен к освещению в диапазоне 400-500 нм.
У взрослых растений синий цвет отвечает за регулирование ширины устьиц листьев, за вытягивание листьев вслед за солнцем и подавление прорастания семян и роста стебля. Последний пункт очень важен для предотвращения «вытягивания» рассады.
Еще одно интересное наблюдение связанное с подавлением роста стебля: со стороны освещения рост клеток тормозится, поэтому стебель становится изогнутым в сторону источника света.
Пожалуй, все имели возможность видеть рассаду изогнутую в сторону окна.
Так вот, это благодаря синему свету. Данное явление имеет название фототропизма.

Ультра-фиолетовая часть спектра, которая также относится к синему цвету имеет следствием влияния торможение растяжения клеток, но ускорение их влияния.
Именно поэтому альпийские растения имеют низкорослую форму, а их «сородичи», растущие в теневых местах или под стеклом наоборот—вытягиваются.

Практические выводы

Давайте попробуем сделать для себя определенные выводы, которые помогут нам на практике.
Прежде всего нас интересуют условия квартиры ранней весной и вытекающая из этого необходимость в искусственном освещении (по причине короткого светового дня) , что имеет большое значение по причине множества опасностей, подстерегающих нас. Очевидно, что все намного проще в более позднее время в условиях открытого пространства (например, в саду), потому как роль освещения берет на себя солнце.

Возникает первый вопрос: где лучше разместить рассаду ? В темноте или на свету ?

1) На свету.
Преимущество—сразу же после прорастания, побег гарантировано получит дозу необходимого красного света для выхода из этиолированного состояния.
Недостаток—возможно наблюдение тормозящего действия на развитие семян.

2) В темноте.
Преимущество—больше шансов на прорастание, поскольку исключено возможное угнетающее действие синего и красного света.
Недостаток—возможное появление «вытянутой» рассады, при отсутствии своевременной реакции на появившиеся всходы.

Первый вариант выглядит более предпочтительным, если нет возможности все свободное время уделять рассаде.
Но следующий вариант будет наилучшим решением. Днем рассада находится в темном месте, а ночью, во время роста растений, помещать ее на подоконник к свету. После ночного прорастания, вот оно утреннее солнце. Тогда будет как в пословице: «И волки сыты, и овцы целы».
Есть еще вариант на любителя: в пасмурную погоду 10 минут светить на рассаду по утрам искусственным светом.

Второй немаловажный вопрос: каким светильником пользоваться.
Тут прежде всего следует учитывать спектральную характеристику прибора, а мощность и другие параметры уже второстепенна. Несмотря на то, что, порой, информация может быть несколько приукрашена производителем, нужные данные без проблем можно найти.
Разумеется, здесь речь идет не о профессиональном оборудовании.

Обычные лампы накаливания совершенно не подходят, потому как они содержат слишком большое количество инфракрасного и желтого излучения, но крайне мало синего. На этом фоне применение люминесцентной лампы дневного света выглядит куда как более целесообразным по причине достаточного количества синего цвета при малом облучении красным спектром гаммы.
Конечно, лучше всего пользоваться искусственным освещением в ранние утренние и/или поздние часы, предоставив растениям насладиться солнечным светом из окна в дневное время.

Подытоживая все написанное, позволю себе адаптировать считалку про радугу на иной манер, характерный нам, садоводам.

Пускай, вместо « К аждый О хотник Ж елает З нать - Г де С идит Ф азан» ,
будет « К аждый Ф илин Г адает, где З айцы Ж ирнее»—при выращивании растений красный ,фиолетовый и синий цвета крайне важны, в то время как зеленый, желтый и оранжевый не имеют почти никакого значения.

Под воздействием солнечного света в растениях происходит фотосинтез - синтезируются углеводы - источник энергии для роста. Для комнатных растений важен солнечный свет, которого им не хватает в зимние месяцы - нужно дополнительное электрическое освещение.

Почему досвечивание растений не всегда помогает им, а растения становятся бледными, теряют пеструю окраску, истончаются и сбрасывают листву?

Искусственное освещение не достигает интенсивности дневного света, поэтому растения нужно досвечивать не просто какими попало, а специальными лампами. Выращивание растений при искусственном освещении позволяет получить гораздо более пышные декоративные растения, цветущие растения при этом могут цвести более длительно. Однако, досвечивание не дает ожидаемого эффекта, если оно будет нерегулярным, т.к. включая лампы от случая к случаю Вы только навредите растению, сбив его биоритмы.

Для улучшения световых условий в зимний период растениям, расположенным на подоконнике или вблизи окна, лампы включают на 4-6 часов.

Для минимальной фотосинтетической активности растения нужен уровень освещенности всего 100 лк (люкс), однако для нормального усвоения углекислоты, воды и других веществ нужен уровень минимум 1000 лк. В пасмурный зимний день освещенность в 100 лк мы можем наблюдать на подоконнике южного окна, а освещенность в 1000 лк - в такой же день на улице.

Как правило комнатным растениям требуется световой день порядка 12 часов в сутки, а интенсивность освещения до 120 000 лк., а по требовательности к свету они делятся на три группы:

  • нужен прямой солнечный свет;
  • требуется яркое рассеянное освещение;
  • хорошо себя чувствуют в полутени.

Зимой для нормального развития растения надо дополнительно обеспечить следующие режимы досветки:

  • 1000. 3000 лк - для растений, растущих в полутени (как правило они нуждаются в искусственном освещении только при размещении на значительном удалении от окон);
  • 3000. 4000 лк - для растений, предпочитающих рассеянный свет;
  • 4000. 6000 лк - для растений, предпочитающих прямые солнечные лучи;
  • 6000. 12000 лк – для выращивания требовательных экзотов, особенно плодоносящих.

РАСПРЕДЕЛЕНИЕ РАСТЕНИЙ ПО РЕЖИМУ ДОСВЕТКИ.

Рекомендуемая освещенность, лк Растения
2500-3000 Агавовые (агава, бокарнея, кордилина, драцена) Акантовые (афеландра, кроссандра, фиттония, гипестес, пахистахис) Аралиевые (дизиготека, фатсхедера, фатсия, плющ, полисциас) Ароидные (аглаонема, алоказия, диффенбахия, монстера, филодендрон, спатифиллум) Бромелиевые (ананас, бильбергия, гузмания, криптантус, эхмея) Виноградовые (ампелопсис, циссус, тетрастигма) Геснериевые (гипоцирта, эписция, стрептокарпус, сенполия) Губоцветные (колеус, плектрантус) Коммелиновые (дихоризандра, каллизия, традесканция, рео) Марантовые (калатея, маранта, строманта) Молочайные (акалифа, кодиеум, молочай, ятрофа) Папоротники Тутовые (фикус, инжир, дорстения)
3000-4000 Аизооновые (делосперма, литопс, конофитум, фаукария) Бегонии Вербеновые (кариоптерис, дуранта, клеродендрум, лантана) Камнеломковые (камнеломка, толмия, корокия) Мареновые (гардения, иксора, пентас, копросма, серисса) Меластомовые (центрадения, мединилла, бертолония) Норичниковые (кальцеолярия, хебе, родохитон) Пальмовые (хамедорея, кариота, ховея, ливистона, финик) Пасленовые (броваллия, брунфельсия, дурман, паслен) Перечные (пеперомия, перец) Саговниковые (цикас, замия) Чайные (камелия, клейра) Эпифитные кактусы (эпифиллум, шлюмбергера, хатиора, рипсалис)
4000-6000 Амариллисовые (амариллис, кливия, гемантус, гиппеаструм) Банановые (банан, геликония, стрелиция) Бигнониевые (кампсис, жаккаранда, пандорея, текома) Бобовые (акация, альбиция, кассия, ракитник, мимоза) Вересковые (азалия, вереск, пернеттия) Гранатовые (гранат) Ластовневые (хойя, церопегия, стапелия, дисхидия) Мальвовые (абутилон, анизодонтея, гибискус, павония) Орхидные Пеларгониевые (пеларгония) Сложноцветные (гербера, хризантема, микания) Стеркулиевые (брахихитон, фремонтодендрон) Толстянковые (эониум, каланхоэ, пахифитум)
6000-и более Кактусы (за исключением эпифитных) Кутровые (адениум, алламанда, катарантус, олеандр, пахиподиум) Маслинные (маслина, жасмин, османтус) Миртовые (мирт, метросидерос, каллистемон, эвкалипт, лептоспермум) Ночецветные (бугенвиллея) Розовые (роза) Рутовые (хоизия, цитрусы, скиммия, муррайя) Страстоцветные (пассифлора)

На зимнее время растения желательно сгруппировать по группам досветки.

Зная площадь подоконика можно легко подсчитать требуемое количество ламп для досветки, так как на упаковках ламп приводится интенсиовность освещения в лк/м2.


ЧЕТЫРЕ ФАКТОРА ДОСВЕТКИ РАСТЕНИЙ.


Растениям свойственен фототропизм - реакция на направление падения света. Искусственный свет должен падать на растения аналогично естественному - сверху, в этом случае растениям не придется расходовать энергию на изменение положения листьев как при боковом освещении, чтобы получить как можно больше света; растения будут меньше искривлять стебли.


Световой день не должен превышать 12 часов в сутки для взрослых растений. Слишком длинный световой день может нарушить развитие цветочных почек, и растение не будет цвести и плодоносить.


Сеянцы нуждаются в круглосуточном освещении . В первые дни после прорастания молодым всходам нужно обеспечить круглосуточное яркое освещение. В последующие дни световой день постепенно сокращают, сначала до 16, потом до 14 часов в сутки.


Выбор освещенности в зимний период зависит от температурного режима . Теплолюбивые тропические растения зимуют при незначительном понижении температуры и освещенности. Для остальных растений понижение освещенности допускается только при прохладной зимовке (5-15 градусов С). В темноте и холоде (0-5 градусов С) допускается содержать только полностью теряющие листву растения.

КАКОЙ НУЖЕН СВЕТ?

Оптическая область спектра светого излучения делиться на:

  • ультрафиолетовое излучение - оптическое излучение, длины волн монохроматических составляющих которого лежат в пределах от 1 до 380 нм;
  • видимое излучение (свет) - излучение, вызывающее зрительное ощущение при попадании на сетчатку глаза, имеет длины волн монохроматических составляющих в пределах от 380 до 780 нм
  • инфракрасное излучение - оптическое излучение, длины волн монохроматических составляющих которого больше 780 нм.

Для растений полезно излучение в области видимого спектра, наибольшее значение имеет область от 400 до 700 нм.


В спектральном диапазоне выделяются участки в соответствии с их влиянием на физиологические процессы растений:

  • длина волны менее 400 нм - излучение вредно для большинства растений;
  • длина волны 400-510 нм - второй пик фотосинтеза, ростовой и формативный эффекты;
  • длина волны 510-700 нм - зона максимального фотосинтетического эффекта (первый пик фотосинтеза), синтез хлорофилла, проявление эффекта фотопериодизма;
  • длина волны более 700 нм - в основном эффект вытягивания стебля.

Область чувствительности фотосинтеза совпадает с областью чувствительности человеческого глаза. Но растения и человек "видят" свет по-разному. Г лаз человека наиболее чувствителен к желто-зеленому свету.

Наиболее полезнымидля растений являются сине-фиолетовые и оранжево-красные лучи:

  • оранжево-красные лучи в условиях оптимальной длины светового дня ускоряют развитие растений
  • сине-фиолетовые способствуют вегетативному росту.

Про желто-зеленые лучи можно забыть (в излучении всех ламп они присутствуют). Излучаемая энергия источников красного света должна быть в два раза больше энергии излучения источников синего света. При избытке красного света рост растений замедляется, стебли вытягиваются и становятся более тонкими, а при его недостатке растение останавливается в развитии. Эта особенность и используется в специализированных фитолампах.

Для равномерности освещения нужно располагать лампы сверху над всей площадью, занятой растениями, но так, чтобы они не загораживали растения от естественного света и не мешали уходу за ними. При боковом освещении, так как растения вытягиваются в сторону источника света, желательно разместить лампы с двух сторон.

Все источники света имеют свои достоинства и недостатки.

Люминисцентные лампы - источники искусственного света с очень хорошими характеристиками, равномерно освещают поверхность, нагреваются всего до 40-45°С и их можно размещать близко к растениям. Их недостатки сводятся, в основном, к высокой рассеянности светового потока (для получения высокой освещенности нужно большое количество ламп) и к качеству излучаемого света.

Лампы дневного света имеют в своем спектре слишком много синего, поэтому их можно использовать только в комбинации с другими, например, с лампами накаливания.

Лампы накаливания в одиночку применять для досвечивания растений нельзя -в спектре отсутствуют сине-фиолетовая составляющая. Поэтому лампы накаливания применяют в комбинации с люминисцентными лампами.

Хочется предостеречь от покупки аквариумных ламп, в т.ч. фито, для горшечных растений они не подходят.

Оптимально решение с использованием светодиодов требуемых дипазонов свечения.

Дополнительная и подробная информация в статьях:

Читайте также: