Бацилла в бульоне






Глава 30. Возбудитель сибирской язвы

Возбудитель сибирской язвы Bacillus anthracis включен в семейство Bacillaceae, род Bacillus. Название болезни - "углевик" дано русским врачом Андриевским, который в конце XVIII века изучал это заболевание в Сибири во время большой эпизоотии среди коров.

Возбудитель сибирской язвы был открыт Паллендером в 1849 г. Большой вклад в изучение этого заболевания внесли Р. Кох, Л. Пастер и Л. С. Ценковский.

Морфология. Возбудители сибирской язвы - крупные палочки 6-8 × 1-1,5 мкм с обрубленными или несколько вогнутыми концами. Грамположительны. В организме они располагаются попарно или в виде коротких цепочек. На питательных средах встречаются длинные цепочки. Бациллы сибирской язвы неподвижны. В организме образуют капсулу, окружающую одну, две особи или всю цепочку. Бациллы сибирской язвы образуют споры овальной формы, расположенные в центре и не превышающие поперечника микробной клетки. Спорообразование лучше всего происходит при доступе кислорода и температуре 30-40° С. При температуре выше 43° С и ниже 15° С спорообразование прекращается. В период образования спор цитоплазма клетки почти полностью лизируется, клеточная стенка разрывается и спора выходит наружу (рис. 47).



Рис. 47. Морфологические и культуральные свойства возбудителя сибирской язвы (Bacillus anthracis). а - В. anthracis (в крови мыши); б - образование капсул; в - споры; г - рост колонии; д - рост культуры на МПБ; е - рост культуры на желатине

Культивирование. Возбудители сибирской язвы - факультативные анаэробы. Неприхотливы. Растут при температуре 35-38° С и рН среды 7,2-7,6. На МПА образуют крупные колонии с неровными бахромчатыми краями (R-форма). От края колонии отходят пучки нитей. Вид колоний напоминает голову медузы или львиную гриву. R-форма является характерной для вирулентных штаммов сибиреязвенных бацилл. В старых культурах появляются гладкие S-формы колоний - не вирулентные.

В бульоне рост сибиреязвенных бацилл характеризуется придонным ростом. На дне пробирки образуется осадок в виде комка ваты, при этом среда остается прозрачной.

При посеве на 10-12% желатин после 2-3-дневной инкубации появляется рост по ходу укола в виде белых тяжей, уменьшающихся книзу (вид опрокинутой елочки).

При посеве возбудителей на МПА с пенициллином (на пластинчатом агаре) наблюдается распад бацилл на шары, цепь из которых напоминает жемчужное ожерелье. Характер роста на средах имеет диагностическое значение (см. рис. 47).

Ферментативные свойства. Сибиреязвенные бациллы обладают выраженной ферментативной активностью. Сахаролитические свойства: расщепляют глюкозу, лактозу, мальтозу, левулезу и другие сахара до образования кислоты.

Протеолитические свойства выражаются в пептонизации молока, разжижении желатина, свертывании молока (медленно). Они образуют сероводород и аммиак, переводят нитраты в нитриты, гидролизируют крахмал и т. д. Не гемолизируют эритроциты, чем отличаются от Вантракоида. Лизируются противосибиреязвенным фагом. Сибиреязвенные бациллы образуют ферменты: диастазу, пероксидазу, липазу.

Токсинообразование. В. anthracis образует токсин - протеиновый комплекс, содержащий отечный и летальные факторы. Этот токсин называют "мышиный токсин" (ввиду высокой чувствительности мышей). Большая роль в вирулентности сибиреязвенных бацилл принадлежит капсуле, которая связана с токсическим веществом.

Антигенная структура. Бациллы сибирской язвы содержат два антигена: 1) соматический (полисахаридный), который находится в клеточной стенке микроба. Термоустойчив. Против этого антигена антитела не продуцируются. Этот антиген длительно сохраняется в культурах и трупном материале. На его обнаружении основана реакция преципитации Асколи; 2) капсульный (протеиновый) антиген, обусловливающий антифагоцитарное действие.

Находясь в организме или на средах, содержащих экстракты тканей, бациллы сибирской язвы вырабатывают протективный термолабильный антиген, который является атоксичным, но обладает иммунизирующей способностью.

У сибиреязвенных бацилл имеется общий антиген с антракоидом и другими спорообразующими сапрофитами (В subtilis, B. cereus и др.).

Устойчивость к факторам окружающей среды. Вегетативные формы возбудителей сибирской язвы малоустойчивы. При 100° С они погибают мгновенно, температура 55-60° С губит их через 30-40 мин. Обычные концентрации дезинфицирующих растворов убивают их через несколько минут. Капсулы сибиреязвенных бацилл обладают большой устойчивостью. При исследовании трупов животных, подвергнутых действию гнилостной микрофлоры, можно обнаружить пустые капсулы (тени). Споры устойчивы: они выдерживают кипячение на протяжении 15-20 мин. Автоклавирование (120° С) убивает их через 20 мин. К низким температурам не чувствительны. В сухом состоянии сохраняются до 30 лет, в почве - десятилетия.

Обычные растворы дезинфицирующих веществ губят их через 2-3 сут (табл. 46).



Таблица 46. Свойства возбудителей сибирской язвы

Примечание. B. anthracoides обладают слабой подвижностью, вызывают гемолиз эритроцитов, непатогенны для морских свинок.

Восприимчивость животных. К сибиреязвенным бациллам чувствительны коровы, овцы, лошади, олени, свиньи. Заражаются они друг от друга пищевым путем, поглощая с кормом споры возбудителя.

Из лабораторных животных наиболее восприимчивы белые мыши, морские свинки, кролики. Эти животные после заражения погибают через 2-4 сут от септицемии. На месте введения наблюдаются отек и гиперемия. Кровь у погибших животных густая и темно-красного цвета, так как сибиреязвенные бациллы обладают антикоагулирующим действием.

Источники заболевания. Больные животные.

Пути передачи. Контактно-бытовой, воздушно-пыльевой, пищевой (при использовании продуктов, зараженных бациллами сибирской язвы).

Человек от человека обычно не заражается, тем не менее при заболевании человека сибирской язвой принимаются все необходимые меры предосторожности.

Кожная форма - в месте проникновения появляется покраснение, переходящее в папулу (зудящую). Папула медно-красного цвета переходит в везикулу с серозно-геморрагическим содержимым, после подсыхания образуется черный струп (углевик).

Легочная форма - развивается специфическая пневмония, протекающая по типу отека легких. Обычно заканчивается летально.

Кишечная форма - все вышеописанные явления развиваются в слизистой кишечника. Обычно заканчивается летально.

Иммунитет. Довольно стойкий, антимикробный и антитоксический. Зависит от образования протективных антител. Большая роль принадлежит фагоцитарной реакции. В сыворотке переболевших сибирской язвой обнаруживаются антитела, разрушающие капсульную субстанцию бацилл.

При сибирской язве развивается гиперчувствительность, регистрируемая в аллергической пробе с антраксином.

Профилактика. Все мероприятия по предупреждению сибирской язвы проводят совместно с ветеринарной службой Они предусматривают своевременное выявление, изоляцию больных животных, тщательную дезинфекцию территории.

Специфическая профилактика. В настоящее время используют вакцину СТИ, которая была изготовлена в 1942 г. Н. Н. Гинсбургом из бескапсульной культуры. Вакцинируют обычно людей, которые по характеру своей работы связаны с сельскохозяйственными животными. Для экстренной профилактики (людям, контактировавшим с больными) вводят противосибиреязвенный иммуноглобулин и антибиотики.

Лечение. Противосибиреязвенный иммуноглобулин, антибиотики: пенициллин, стрептомицин, тетрациклин.

Контрольные вопросы

1. Опишите морфологию возбудителя сибирской язвы.

2. Опишите культуральные свойства и какая форма: S или R является вирулентной?

3. Какими свойствами обладает сибиреязвенный токсин?

4. Пути передачи и формы заболевания сибирской язвой.

5. Какие факторы обусловливают иммунитет при сибирской язве.

Микробиологическое исследование

Цель исследования: выявление возбудителей сибирской язвы и дифференциация его от антракоида, выявление антигенов возбудителя.

Работа с возбудителем сибирской язвы проводится в строго режимных условиях!

1. Содержимое везикул, карбункула, отторгнутый струп (кожная форма).

2. Мокрота (легочная форма).

3. Испражнения (кишечная форма).

4. Кровь (септическая форма).

5. Почва, шерсть животных (для постановки реакции Асколи).



Способы сбора материала

5. Реакция преципитации Асколи.



Первый день исследования

1. Посевы вынимают из термостата. Изучают рост на плотной и жидкой питательной среде. Колонии на плотной питательной среде изучают под микроскопом при малом увеличении. При наличии подозрительных колоний выделяют чистую культуру на скошенный МПА. Посевы инкубируют в термостате.

2. Из бульонной культуры (рост в виде комка ваты на дне, бульон прозрачный) делают висячую каплю (для установления неподвижности - дифференциации от антракойда).

3. Ставят тест "жемчужного ожерелья" (ускоренный метод исследования). С этой целью к бульону Хоттингера добавляют 30% инактивированной лошадиной сыворотки и пенициллин из расчета 0,5 ЕД на 1 мл бульона. Приготовленную среду разливают в пробирки по 2-3 мл и в каждую вносят 2 капли исследуемой бульонной культуры. Посевы инкубируют в термостате 3 ч при температуре 37° С. Затем вынимают их из термостата. Из каждой пробирки делают 2-3 мазка, высушивают на воздухе и фиксируют в жидкости Карнуа (6 частей этилового спирта + 3 части хлороформа + 1 часть ледяной уксусной кислоты). Фиксацию проводят до полного испарения жидкости. Полученные мазки окрашивают метиленовым синим и микроскопируют.

В мазках сибиоеязвенные бациллы обнаруживаются в виде цепи шаров, напоминающих жемчужное ожерелье - результат действия пенициллина.

4. Осматривают зараженных животных. Павших животных вскрывают, делают мазки и мазки-отпечатки, которые фиксируют, окрашивают и изучают под микроскопом. При наличии подозрительных палочек производят посевы на МПА и МПБ.

Вынимают посевы из термостата, делают мазки, микроскопируют. На МПА и МПБ бациллы сибирской язвы растут в виде бескапсульных особей. Производят посев на сахара, лакмусовое молоко, желатин, на чашки с 2% кровью и ставят пробу с сибиреязвенным бактериофагом. Посевы инкубируют в термостате.

Вынимают посевы из термостата и учитывают полученные результаты (см. табл. 46).

Исследование мокроты, испражнений и крови после специальной обработки ведут так же.

Для диагностики сибирской язвы используют аллергическую пробу с сибиреязвенным антигеном (антраксин). Для этого внутрикожно на внутренней поверхности предплечья вводят антраксин. Реакцию учитывают через 24-48 ч. Положительная реакция проявляется с первых дней заболевания.

Реакцию ставят для обнаружения специфического антигена бацилл сибирской язвы в шерсти животных, коже, трупах, почве и т. д.

Приготовление антигена: исследуемый материал измельчают в ступке, заливают 25-50-кратным объемом изотонического раствора натрия хлорида и кипятят (антиген термоустойчив). Полученный экстракт фильтруют через смоченную тем же раствором фильтровальную бумагу. Фильтрат-термоэкстракт - прозрачная жидкость. Для реакции используют преципитирующую сибиреязвенную сыворотку и для контроля сибиреязвенный антиген (рис. 48).



Рис. 48. Реакция Асколи. 1 - преципитирующая сыворотка + исследуемый термоэкстракт; 2 - преципитирующая сыворотка + стандартный сибиреязвенный антиген (контроль); 3 - преципитирующая сыворотка + антиген из шерсти здорового животного (чужеродный антиген); 4 - преципитирующая сыворотка + изотонический раствор хлорида натрия; 5 - нормальная сыворотка + испытуемый антиген

Постановка реакции: 1-я пробирка - преципитирующая сыворотка + исследуемый термоэкстракт;

2-я пробирка - преципитирующая сыворотка + стандартный сибиреязвенный антиген (контроль).

3-я пробирка - преципитирующая сыворотка + термоэкстракт из шерсти здорового животного (контроль).

При положительной реакции в первых двух пробирках образуется преципитационное кольцо, в третьей - кольцо отсутствует.

Реакция эта очень чувствительна (см. рис. 48).

МПА, МПБ, желатиновая среда (см. главу 7).

Контрольные вопросы

1. Какой материал используют для бактериологического исследования?

2. Основные методы микробиологического исследования.

3. Какие имеются ускоренные методы исследования? Как получить тест "жемчужного ожерелья?"

4. Каким методом можно выявить сибиреязвенные бациллы во внешней среде?

Задание

Нарисуйте схему лабораторного исследования сибирской язвы но дням.






Престижные индивидуалки согласны оттянуться в полный рост с вами предельно пышным отдыхом сексуального характера. Они изящные проститутки будут рады, если вы насвистите им в пустое время и посоветуйте увидеть друг друга.


Бациллюс субтилис является одним из представителей вида аэробных спорообразующих почвенных бактерий, положительных по Граму. В связи с тем, что для получения накопительных культур данного микроорганизма используют сенный экстракт, второе название бациллюса – Сенная палочка. Описание данной бактерии впервые представил знаменитый немецкий естествоиспытатель Христиан Готфрид Эренберг в 1835 году, однако в его трактовке этот микроорганизм носил название Vibrio subtilis. А свое современное название Bacillus subtilis он получил уже в 1872 году. На сегодняшний день это один из наиболее известных и тщательно изученных представителей рода бацилл.


Биологические свойства

Для Бациллюса характерна форма прямой палочки, которая имеет прозрачную структуру. Приблизительная толщина Bacillus subtilis составляет 0,7 микрометра. А в длину такая бацилла может достигать от двух до восьми микрометров.

Размножаются сенные палочки, как и другие бацилл, делением. В отдельных случаях после того, как произошло поперечное деление, бактерии продолжают оставаться соединенными в тоненькие нити.

Среди самых важных биохимических свойств, присущих Бациллюсу субтилис, следует выделить способность закисления среды, а также продуцирования антибиотиков. Именно благодаря этим своим свойствам Сенная палочка из рода бацилл способна уменьшать воздействие различных условно-патогенных, а также патогенных микроорганизмов. Bacillus subtilis – это антагонист для:

  • дрожжевых грибков;
  • сальмонеллы;
  • протея;
  • стрептококков;
  • стафилококков.

К другим характерным свойствам Бациллюса относятся:

  • синтез витаминов, аминокислот и иммуноактивных факторов;
  • активное продуцирование ферментов, способных удалять продукты гнилостного распада тканей.

Для бактерии Bacillus subtilis характерно жгутикование перитрихиального типа, а также центральное расположение спор, имеющих форму овала, и размер, который не превышает размер клетки. Что касается колоний Бациллюса, они бывают белыми или розовыми, им присущ волнистый край, а также сухая и бархатистая структура, покрытая мелкими морщинками.

Выращивание бацилл


Для эффективного выращивания бактерии Bacillus subtilis могут требоваться среды нескольких видов:

  • жидкая среда, а именно мясопептонный бульон;
  • плотная среда – мясопептонный агар;
  • простые питательные среды, полученные синтетическим путем;
  • среды с содержанием остатков растительного происхождения.

Под понятием мясопептонного агара принято подразумевать универсальную питательную среду, которая может иметь как плотную, так и полужидкую текстуру. В составе данной среды присутствуют такие компоненты, как мясная вода, поваренная соль, а также размельченный и тщательно промытый агар. Для его стерилизации в автоклаве необходима температура не менее 120 ºC, а процесс этот должен длиться приблизительно двадцать-тридцать минут. После завершения стерилизации готовая среда будет остывать естественным путем, приобретая более плотную текстуру.

Максимально благоприятное развитие Сенной палочки гарантируется при уровне температуры воздуха от +5 до +45 ºC.

Опасны или нет?

Относительно патогенности Бациллюса существует несколько мнений. Так, в соответствии с официально действующими на территории Российской Федерации санитарными правилами и нормами, Bacillus subtilis принадлежит к роду условно-патогенных бактерий.


Однако Большая Советская Энциклопедия, а также авторитетные зарубежные источники твердо настаивают на безопасности Бациллюса субтилис, утверждая, что данный микроорганизм является абсолютно не патогенным. В результате научных исследований была доказана безопасность данных бактерий из рода бацилл как для людей, так и для животных. Таким образом, Управление по контролю качества лекарственных и продовольственных средств в Соединенных Штатах Америки справедливо присвоило Bacillus subtilis статус абсолютно безопасных организмов.

Однако, несмотря на данный факт, ни в коем случае не допускается присутствие Сенной палочки в разнообразных консервах, в частности, рыбных, мясных и растительных. Всегда следует иметь в виду, что если по каким-либо причинам в консервах остались споры, сохранившие свою жизнеспособность, это значит, что при хранении данного продукта при температуре, превышающей +20 ºC, размножение возбудителей будет неизбежным. Поэтому, для того чтобы обезопасить консервы от содержания Бациллюса, необходимо тщательно соблюдать все технологии и нормативы приготовления продуктов данного типа. Как правило, о присутствии Bacillus subtilis в консервах сигнализирует наличие характерного сероватого налета. Кроме того, с запахом и консистенцией консервов происходят определенные неблагоприятные изменения.

Применение в медицине и других сферах


Благодаря биохимическим свойствам достаточно широко распространено применение Бациллюса в производстве медицинских препаратов. Так, Bacillus subtilis из рода бацилл, согласно фармакологическому указателю, принадлежит к таким категориям, как:

  • Противодиарейные средства.
  • Другие иммуномодуляторы.

Основная функция таких препаратов заключается в регулировании нормальной деятельности кишечной флоры и ее равновесия. В результате поддерживания ее на нормальном уровне полностью устраняются любые проявления дисбактериоза.

Препараты Бациллюса назначают при таких состояниях, как:

  • кишечный дисбактериоз, имеющий различный характер и происхождение;
  • острые кишечные инфекции, широко распространенные у детей;
  • бактериальный вагиноз;
  • послеоперационный период с гнойно-септическими осложнениями.

Все свои полезные свойства препараты Bacillus subtilis идеально сохраняют при соблюдении правил хранения. Оптимальная температура воздуха в данном случае составляет 25 ºC. Кроме того, очень важно обращать внимание и на срок годности, указанный на упаковке. Препарат Сенной палочки имеет вид лекарственной суспензии, представленной во флаконах объемом 2, 5 и 10 миллилитров.

Следует помнить, что применение данной бактерии из рода бацилл также имеет определенные противопоказания. Главным образом это повышенная чувствительность к составным компонентам препаратов.

К самым популярным медицинским препаратам, созданным на основе Бациллюса в качестве действующего вещества, принадлежат:

  • «Споробактерин».
  • «Бактисубтил».
  • «Биоспорин».
  • «Энзимтал».

Особенности бактерии турингиенсис

Еще одна бактерия, являющаяся положительной по Граму и принадлежащая к роду бацилл, Турингиенсис (Bacillus thuringiensis), обладает способностью во время споруляции образовывать включения, которые имеют похожую на кристалл структуру. В своем составе она содержит дельта-эндотоксины – вещества, принадлежащие к категории энтомоцидных белков. Форма такого «кристалла» может быть различной – кубической, бипирамидальной или округлой. Особые свойства данной бактерии позволяют использовать ее в сфере биологической защиты растений.

Важные свойства и особенности Bacillus subtilis

Для Бациллюса характерны особые свойства, позволяющие широко его применять в медицинской сфере. К главным особенностям данной бактерии из рода бацилл относятся:

  • широкое распространение в живой природе;
  • безопасность и безвредность как для людей, так и для животных;
  • высокая ферментативная активность для оптимального регулирования и стимулирования пищеварительной системы;
  • отличная устойчивость к пищеварительным и литическим ферментам;
  • экологическая безопасность и устойчивость к широкому температурному диапазону.


В результате тщательного изучения свойств Сенной палочки стало известно о том, что данный род бактерий идеален для клонирования генов, являющихся чужеродными. На основе этих спорообразующих аэробных бактерий, являющихся представителями рода бацилл, уже в течение длительного времени успешно создают суперэффективные продуценты разных биологически активных веществ. Кроме того, значительно расширяются перспективы разработки новых препаратов, которые будут обладать заданными свойствами и демонстрировать более высокую эффективность.


Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.


Сенная палочка — сапрофитный микроб, вызывающий большой интерес у микробиологов по причине повсеместного распространения, особенностей развития и необычной устойчивости спор к физико-химическим агентам. Латинское название бактерии – Bacillus subtilis. Изучением и описанием ее свойств в 1835 году занимался Эренберг, а в 1872 году Кон. Впервые микробы были выделены из прелого сена. Его экстракт необходим для накопления чистой культуры. Сено варили и выдерживали три дня, после чего в нем обнаруживали бактериальные клетки. Благодаря такой особенности палочка и получила свое название. Bacillus subtilis продуцирует некоторые антибактериальные вещества, полисахариды, аминокислоты и ферменты, а также целый набор химических микроэлементов – соединений азота, фосфора, калия в сбалансированном виде.

По своей микробиологической сущности сенная палочка является крупной бактериальной клеткой, которая положительно окрашивается по Грамму, растет и размножается в присутствии кислорода. Она обитает в почве и обладает способностью образовывать споры. Это безопасный микроорганизм, не обладающий патогенными свойствами.

Свойства

Молекулярно-биологические и структурно-функциональные особенности сенной палочки давно и подробно изучены. Бактерия относится к классу бацилл, семейству бацилиас, роду бацилус. Микроорганизмы, объединенные в вид бацилус субтилис, имеют ряд отличительных свойств: морфологических, тинкториальных, физиологических, культуральных, метаболических, биохимических.


Bacillus subtilis (споры окрашены в синий цвет)

Морфология. Bacillus subtilis – палочка, геном которой представлен кольцевой двуцепочечной ДНК. Штаммы бактерий отличаются сочетанием генов, кодирующих синтез антибиотиков, клеточной стенки и отвечающих за процесс споруляции и прорастания спор. Микроорганизм имеет прямую, слегка вытянутую форму с тупыми закругленными концами. Эта достаточно крупная палочка бесцветна. Овальные споры располагаются центрально. Их размер не превышает диаметр клетки. Бактерия благодаря перитрихиально расположенным жгутикам обладает подвижностью.

  • Тинкториальные свойства. Клетки хорошо воспринимают обычные анилиновые красители. Микроорганизмы окрашиваются по Грамму в синий цвет — являются грамположительными. Под микроскопом бактерии имеют вид тонких нитевидных образований. В мазке бациллы располагаются по-разному — одиночно, скоплениями или длинными цепочками.
  • Физиология. Бактерии распространены повсеместно. Они являются обитателями почвы, воздушной пыли и воды. Из почвы бациллы контактным путем распространяется на растения, с которыми в виде корма попадают в организм животных. Возможно и прямое обсеменение продуктов растительного или животного происхождения. Сенная палочка — представитель биоценоза кишечника здорового человека, препятствующий росту и размножению таких опасных микробов, как сальмонелла, протей, энтеробактер, стафилококк. Хищные животные, поедая растительную пищу, не только обогащают свой организм клетчаткой и витаминами, в него попадают споры сенной палочки, которые предупреждают развитие инфекционного процесса и укрепляют иммунитет. Размножение бактерий происходит путем простого бинарного деления с образованием двух дочерних клеток, между которыми сохраняется тонкая нить. Микробы также способны плодиться споровыми формациями.
  • Метаболизм. Бацилла — сапрофит, питающийся мертвыми органическими веществами. Бактерии относятся к группе гетеротрофов, которые не могут продуцировать пищу самостоятельно. Источником энергии для сенной палочки являются природный и животный углеводы — крахмал и гликоген соответственно. Микробы аммонифицируют белки и синтезируют органические кислоты, микроэлементы, витамины, ферменты.
  • Споруляция. Способность Bacillus subtilis к спорообразованию помогает ей выжить в критической обстановке. Эндоспоры выдерживают экстремальные температуры и сухие среды. Процесс образования спор довольно сложный. Структура клетки приобретает некоторую зернистость. Самое крупное зернышко непрерывно растет и покрывается плотной оболочкой. Это будущая спора. Негативное воздействие различных факторов приводит к разрушению наружной микробной оболочки. Бактериальная клетка погибает, а спора выходит во внешнюю среду. При оптимальных условиях она трансформируется в неподвижную активную бактерию, которая начинает работать – защищать почву и растения от болезней. Споры резистенты к нагреванию до 100°С и более. При кипячении сена, из которого выделяют Bacillus subtilis, они не погибают.
  • Культуральные свойства. Сенная палочка растет в аэробных условиях в большом диапазоне температур — от +5 до +45°С. Температурный оптимум для бактерии — 20-30°С. Некоторые штаммы не нуждаются в кислороде и являются факультативными анаэробами. На плотных питательных средам образуются сухие, мелкие, морщинистые, бархатистые колонии с волнистым краем розового, серого цвета или полностью прозрачные. На поверхности жидких сред после инкубации появляется тонкая пленка с беловатым налетом, а на дно пробирки выпадает осадок. Бактерии неприхотливы и хорошо растут на простом агаре, в бульоне, на средах с растительными остатками и синтетических питательных средах для гетеротрофов. Для самостоятельного выделения бактерий необходимо прокипятить сено и выдержать полученный отвар в тепле двое суток. На поверхности настоя вскоре появится пленка, состоящая исключительно из бактерий.
  • Биохимия. Бацилла расщепляет некоторые сахара, накапливает ацетоин — продукт анаэробного превращения глюкозы, разлагает полисахариды и белки до простых мономеров, разжижает желатин, продуцирует каталазу и лецитиназу, участвует в процессе денитрификации, дает положительную реакцию с цитратом натрия, образует аммиак и сероводород.
  • Антибиотикорезистентность. Микроорганизмы устойчивы к антибиотикам из группы полимиксина, рифампицина, линкозамидов, пенициллина.
  • Сенная палочка не является патогенным микроорганизмом. Она относится к группе санитарно-гигиенических показателей загрязнения пищевых продуктов.

    Биологическая роль

    Сенная палочка играет важную роль в жизнедеятельности животных и человека. Она выполняет целый ряд функций:

    1. Пищеварительная — бактерия, попадая в живой организм вместе с растительной пищей, продуцирует в кишечнике ферменты, которые расщепляют пищевые ингредиенты: протеазы ферментируют белки, амилазы – полисахариды.
    2. Антагонистическая – подавление роста болезнетворных микробов в кишке и профилактика острых кишечных инфекций. Споры сенной палочки в толстом кишечнике превращаются в активные формы, которые вырабатывают органические кислоты. Они изменяют рН среды, тем самым, подавляя рост патогенных и условно-патогенных микроорганизмов.
    3. Защитная – сенная палочка защищает растения от плесневых грибков и других вредных микроорганизмов.
    4. Сенная палочка является низшим звеном длинной пищевой цепочки, включающей простейших, рыб, человека.
    5. Бактерия насыщает живой организм сахарами и незаменимыми аминокислотами, которые образуются в ходе целого ряда химических реакций, протекающих под воздействием ферментов сенной палочки.
    6. Витаминообразующая — участие бактерии вместе с другими представителями микрофлоры кишечника в синтезе витаминов группы В.
    7. Омолаживающая – сенные бациллы выделяют оксид азота, который поступает в клетки и ускоряет обмен веществ в тканях.
    8. Иммуномодулирующая – укрепление иммунитета и повышение неспецифической резистентности организма человека.
    9. Противомикробная — бактерии подавляют размножение и вызывают гибель возбудителей гнойной инфекции.
    10. Bacillus subtilis оказывает позитивное влияние на течение раневого процесса: она изменяет рН среды в кислую сторону, подавляет размножение патогенных микробов, расщепляет гной и продукты распада, очищает и обеззараживает рану, в результате чего она быстрее заживает.


    цикл развития сенной палочки

    B.subtilis продуцирует ряд биологически активных веществ, эффективно уничтожающих бактериальные, вирусные и грибковые клетки. Причем устойчивость к данным противомикробным средствам возникает крайне редко. Они обладают избирательным действием, вызывая гибель условных и безусловных патогенов. Антимикробные вещества являются нейтральными по отношению к аутохтонной полезной микрофлоре. Бактерии стимулируют иммунитет путем активации клеток макрофагального звена, выброса цитокинов в кровь, секреции витаминов и аминокислот. Лимфоциты, активизируясь, вырабатывают IgG и IgA. В кишечнике ускоряется рост и размножение «полезных» микроорганизмов – лактобактерий и бифидобактерий. Протеолитические ферменты, синтезируемые прямо в кишке, улучшают процессы пищеварения и всасывания образовавшихся питательных веществ.

    Все эти механизмы действия сенной палочки в организме человека делают обоснованным ее применение для:

    • Лечения кишечных инфекций и дисбактериоза,
    • Профилактики респираторных инфекций,
    • Коррекции пищеварительных расстройств различного генеза.

    B.subtilis не вызывает побочных эффектов, являясь довольно эффективным и практически безопасным микроорганизмом.

    Не смотря на такое многообразие положительных свойств сенной палочки, существуют и негативные моменты для человека, из-за которых некоторые ученые относят бактерию к группе условно-патогенных.

    1. Бактерия при инфицировании роговицы и склеры приводит к развитию тяжелого воспаления.
    2. Сенная палочка вызывает порчу некоторых пищевых продуктов и отравление у людей, употребивших их.
    3. Bacillus subtilis — причина аллергических реакций, протекающих по типу крапивницы.
    4. Бацилла, расщепляя компоненты пищи, усугубляет течение кишечного гельминтоза. Паразиты получают достаточное количество питательных веществ и активизируют процессы своей жизнедеятельности.

    Сенная палочка не вызывает смертельно опасных заболеваний у человека. Она относится к транзиторной микрофлоре кишечника. Спустя месяц после поступления в организм, она самостоятельно выводится. Авторитетные американские ученые отнесли Bacillus subtilis в категорию безопасных организмов. Но не смотря на это, нельзя допускать появления бациллы в рыбных, мясных и растительных консервах. Если в них оказались жизнеспособные споры, значит при благоприятной температуре начнут размножаться микроорганизмы. Этот процесс можно заметить визуально — по наличию серого налета, неприятного запаха и консистенции продукта. Чтобы избежать подобных проблем, необходимо соблюдать все технологии и нормативы приготовления консервов.

    Значение и применение

    Огромное значение имеет Bacillus subtilis в различных отраслях промышленности. Сенная палочка представляет медицинский, хозяйственный и научный интерес. Она является сельскохозяйственным и защитным инструментом.

    • Ферменты, синтезируемые ею, используют при производстве моющих средств, которые удаляют жир и белки в процессе обработки шкур.
    • Сенная палочка обладает антагонистическими свойствами против фитопатогенов, что широко применяется в биологической защите растений.

    • Бактерии являются основным действующим веществом некоторых медикаментов, имеющих антимикробную направленность, а также пробиотиков и иммуномодуляторов. С помощью различных штаммов сенной палочки были получены лекарства для лечения инфекций, вызванных энтеробактериями, а также кишечного дисбиоза, гнойных осложнений у детей и лиц, которым запрещен прием антибиотиков. Наиболее популярные препараты – «Споробактерин», «Бактиспорин», «Биоспорин».
    • Защита растений от бактериальных и паразитарных болезней осуществляется с помощью препаратов на основе палочки, абсолютно безвредных для человека – «Алирин-Б», «Гамаир», «Фитоспорин». Не зря дачники прозвали бациллу «палочкой-выручалочкой». Этот природный антибиотик защищает урожай от гнили. Ферменты, синтезируемые микробом, расщепляют продукты гниения, а аминокислоты и витамины, образующиеся в результате жизнедеятельности бактерии, идут на пользу растениям. В сравнении с ядохимикатами безопасная сенная палочка имеет явные преимущества.
    • Сенная палочка представляет особый интерес с точки зрения экологической безопасности. В настоящее время ведутся работы, оценивающие состояние окружающей среды экотопа, в котором распространен этот уникальный микроорганизм. Его применение – основной метод борьбы с отходами в рамках «зеленой» экономики.
    • Отдельные штаммы Bacillus subtilis применяют в кулинарии. Их используют для ферментации овса и бобов. Сброженные соевые бобы – основа национальных блюд в Японии.
    • С помощью микробов проводят сложные молекулярно-генетические исследования, целью которых является изучение влияния космического ультрафиолета и других экстремальных факторов на живой организм.

    Представители рода Bacillus имеют ряд характерных особенностей и отличаются от других бактерий основными морфолого-физиологическими признаками – палочковидной формой, способностью к спорообразованию, потребностью в свободном кислороде. Это свободноживущие, одноклеточные, нефотосинтезирующие аэробы.

    Сенная палочка — безвредный для человека микроорганизм, который широко применяется в различных отраслях медицины, промышленности, хозяйства. Благодаря высокой активности продуцируемых ферментов она регулирует и стимулирует работу ЖКТ. Бактерия оказывает противовирусное, антиаллергенное, противоонкогенное и дезинтоксикационное действие. Она не теряет своих свойств при хранении и позволяет использовать в процессе производства более экономичные технологии. Палочка обладает устойчивостью к некоторым антибиотикам, ферментам, широкому температурному диапазону. Bacillus subtilis является экологически безопасным организмом. Современные ученые-микробиологи вырастили множество штаммов этой бациллы с вполне определенными качествами.

    Не каждый может ответить, что такое Бациллюс субтилис. Однако с этим существом большинство из нас прекрасно знакомы. Кто хоть раз приподнимал свежескошенную траву, тот видел под ней белесый налет. Это и есть бактерии Бациллюс субтилис (Bacillus subtilis). Необычайно распространенная в природе эта бактерия была первоначально выращена на прелом сене. Именно поэтому мы ее называем сенная палочка.

    Микробиологическая «модель»

    В различных отраслях биологии имеются свои «модельные» организмы, которые становятся главным объектом изучения и опытов. Например, в генетике таким организмом стала плодовая мушка дрозофила, в микробиологии простейших – инфузория-туфелька, а в бактериологии - Бациллюс субтилис.


    Вам будет интересно: В последствии или впоследствии: правила написания, нюансы, похожее выражение

    Благодаря данной бактерии досконально изучен процесс споробразования и механизм работы двигательного мотора жгутиковых бактерий. Молекулярные биологи в числе первых расшифровали геном этой бациллы.

    Сегодня Бациллюс субтилис выращивают в условиях невесомости и изучают ее влияние на геном популяции. В космической биологии ее облучают космическим ультрафиолетом и исследуют ее способности к выживанию в условиях, близких к таковым на Марсе.


    Короткая характеристика

    Впервые сенную палочку описал в 1835 году немецкий биолог Христиан Готфрид Эренберг (1795-1876). Бацилла хорошо росла на сенном экстракте, почему и получила первую часть имени. Внешне это палочковидные бактерии, поэтому их называют палочками.

    Это довольно крупные бациллы (длина до 0,008 мм, диаметр 0,0006 мм), которых можно увидеть даже в школьный микроскоп. На поверхности мембраны клетки у Бациллюс субтилис расположено множество жгутиков.

    Эти подвижные бактерии являются аэробами (для обеспечения процессов жизнедеятельности им необходим атмосферный кислород). Но некоторые штаммы (искусственно выращенные генетически однородные группы) могут стать факультативными анаэробами.

    Оптимальный температурный режим для сенной палочки находится в пределах от 25 до 30 градусов по Цельсию. Но они выживут и при -5 и при +150 градусах, благодаря образованию спор.


    Питание и распространение

    В природе обитает Бациллюс субтилис в почве, но встречается в воде и в пыли. Эти микроорганизмы ходят в состав микрофлоры нашего кишечника и желудочно-кишечного тракта животных.

    Это бактерии-сапрофиты, они питаются органическими остатками. Основной источник энергии для них - это полисахариды на основе глюкозы растительного (целлюлоза и крахмал) и животного (гликоген) происхождения.

    Продуктами метаболизма сенной палочки являются аминокислоты, витамины, разные ферменты, антибиотики. Эти особенности бактерии человек давно научился использовать в своей деятельности.


    Вам будет интересно: Что такое павильон, и где он обитает


    Особенности биохимии

    К самым важным свойствам сенной палочки стоит отнести их способность повышать кислотность среды и продуцировать антибиотики.

    Эти бациллы являются антагонистами для дрожжевых грибков, сальмонелл, амебы протей и дизентерийной, стрепто- и стафилококков.

    В процессе жизнедеятельности сенные бациллы синтезируют аминокислоты, антибиотики, ферменты и иммуноактивные вещества. Сегодня штаммы этой бациллы используют при производстве ферментов, антибиотиков, биопрепаратов (усилители запаха, пищевые добавки), инсектицидов.


    Как вырастить колонию

    В чашках Петри колонии этих бацилл выглядят, как морщинистые блинчики с волнистыми краями белого или розоватого цвета, сухой и бархатной структуры.

    В лабораториях штаммы сенной бациллы выращивают на мясопептонном бульоне или агаре, искусственных средах или на субстанции с остатками растительного организма.

    В домашних условиях достаточно прокипятить обычное сено и поставить настой в теплое место на 1-2 дня. На поверхности водного настоя появится пленка исключительно из бактерий сенной палочки. Все остальные микроорганизмы погибнут при кипячении.


    Условно патогенные организмы

    В открытых ранах на теле человека эти бактерии выделяют антибиотики и ферменты, которые разрушают отмершие ткани. Уже доказано, что эти бациллы отрицательно влияют на патогенные организмы при хирургическом инфицировании (сальмонеллы, стафилококки, стрептококки).

    Однако они являются условно патогенными, потому что обладают такими негативными для людей способностями:

    • Могут вызывать аллергию в виде сыпи.
    • Приводят к пищевому отравлению при употреблении испорченных продуктов.
    • Могут стать причиной инфекций слизистых оболочек глаз.

    Сенная палочка и человек

    С точки зрения использования человеком бактерии интересны в контексте двух вопросов:

    • Чем они могут нам помочь.
    • Как они могут нам навредить.

    С сенной палочкой сотрудничество человека началось очень давно. Сегодня микробиологи вырастили множество штаммов этой бациллы с вполне определенными качествами. Данный микроорганизм используется в растениеводстве, животноводстве, производстве лекарственных препаратов, методах борьбы с отходами в рамках «зеленой» экономики.


    Бациллы в медицине

    Биохимические особенности позволяют широко использовать данный организм при производстве медицинских препаратов. Бациллюс субтилис по фармакологическим признакам относится к:

    • Противодиарейным средствам.
    • Иммуномодуляторам.

    Препараты на основе сенной палочки («Споробактерин», «Бактисубтил», «Биоспорин») назначают при дисбактериозах кишечника и половых путей, в послеоперационный период при гнойных осложнениях.

    Однако стоит помнить и о противопоказаниях, главным из которых является повышенная чувствительность или непереносимость компонентов препарата.

    Данный микроорганизм широко применяется и в биологически активных добавках.

    Другие области применения

    В растениеводстве наиболее распространенным препаратом на основе сенной палочки является «Фитоспорин». Он эффективен в борьбе с грибковыми и бактериальными болезнями культурных растений. При этом плоды можно употреблять в пищу даже в день опрыскивания их препаратом.

    В животноводстве используется особенность сенной палочки сбраживать целлюлозу, что способствует лучшему усваиванию углеводов животными. Кроме того, препараты антибактериального действия на основе данной палочки широко используются в животноводстве, птицеводстве, рыбоводстве.

    В промышленных масштабах производятся протеазы и амилазы – ферменты сенной палочки, которые входят в состав моющих средств, препаратов для выделки и очистки шкур.


    Существуют отдельные штаммы, которые имеют очень узкую специализацию. Так, они используется для приготовления японского блюда натто на основе соевых бобов.

    Планы на будущее

    Развитие генной инженерии также невозможно без бактерий. И сенная палочка не последняя в списке «моделей» для создания трансгенных организмов.

    Про помощь в исследованиях космоса мы уже писали.

    Сегодня активно развивается изучение распространения сенной палочки в природе с точки зрения экологической безопасности. Уже есть работы по оценке состояния окружающей среды на основе корреляции распространения этого уникального микроорганизма в экотопе.

    В 1872 году, Роберт Кох, будущий великий микробиолог, был назначен санитарным врачом в Вольштейне (ныне Вольштын в Польше), где в то время свирепствовала сибирская язва. Эта болезнь была известна с древности под названием «священный огонь»: люди считали, что только разгневанные боги могли послать на землю такую кару. Сибирская язва была угрозой для всего сельского хозяйства — чаще всего заболевал домашний скот. Однако гибли не только животные, но и люди: фермеры, пастухи, доярки.

    Рассматривая в микроскоп кровь погибших животных, Кох обнаружил, что в развитии болезни виноват только один микроб — бацилла (Bacillus anthracis). Учёному удалось выделить бациллу и вырастить чистую культуру — культуру, представленную одним видом микробов. Он заразил совершенно здоровое животное чистой культурой, вызвав у него сибирскую язву. Учёный понял, что создание чистых культур — залог успешного определения причин инфекции.

    Роберт Кох, как и его предшественники, выращивал бактерии в жидкой среде — мясных или зерновых отварах. Коху удалось получить чистую культуру бациллы сибирской язвы в жидком бульоне, но он искал другой метод. На это были веские причины. Если в бульон попадало несколько видов бактерий, они смешивались между собой и разделить их было чрезвычайно сложно. Приходилось не раз пересаживать бактерии. Из раствора, где нужных бактерий было больше всего, Кох брал маленькую капельку и переносил в свежий бульон. В новом бульоне посторонних бактерий было уже меньше, но следовало монотонно повторять эту операцию несколько раз, чтобы в результате в питательной среде оказался только один вид микробов.


    Роберт Кох (1843–1910) — немецкий микробиолог. Открыл бациллу сибирской язвы, холерный вибрион и туберкулёзную палочку (палочку Коха). В 1905 году удостоен Нобелевской премии по физиологии и медицине «за исследования и открытия, касающиеся лечения туберкулёза».


    До Роберта Коха исследователи наблюдали микроорганизмы бесцветными, что приводило к многочисленным ошибкам. Кох применил анилиновые красители, которые избирательно окрашивали только микробы. После опытов Коха учёные по всему миру стали изобретать методики окрашивания бактерий. Так, в 1884 году врач Ганс Кристиан Грам придумал метод окрашивания, который стал одним из основных для определения наличия и типа бактерий в определённом субстрате.

    Микробы очень маленькие (в среднем 0,5–5 мкм), не сильно отличаются внешне, что вызывает определённые трудности в их изучении. Для исследования нужно выделить микроб из окружающего мира, полного самыми разными микроорганизмами. Микробная клетка, попав на питательную среду, даёт потомство — сгусток одинаковых клеток, колонию, которую можно изучать как один микроорганизм. Оказалось, что, подобрав условия культивирования, можно получить в чистом виде клетки любого микроорганизма. А значит — дать ему имя, описать свойства, классифицировать. Благодаря этому открытию Роберта Коха, микробиология была выделена в самостоятельную науку.

    После доклада об открытии возбудителя сибирской язвы Роберта Коха пригласили заведовать лабораторией в микробиологическом институте в Берлине и предложили должность советника при министерстве здравоохранения. У Коха появилось хорошее оборудование, талантливые ассистенты и возможность решить загадку, которая давно его мучила. Было известно, что туберкулёз тоже вызывает какой-то микроб: тканями больного человека удавалось заразить здоровых животных. Коху удалось подобрать методику окрашивания препаратов тканей, чтобы разглядеть бактерию-возбудителя в микроскоп. Но его радость была недолгой — бактерия не желала расти на обычных питательных средах.


    Макроснимок колоний туберкулёзной палочки (Mycobacterium tuberculosis). Их отличает бесцветная неровная поверхность.

    Однажды учёный заметил брошенную на столе заплесневевшую картошку с обилием разноцветных пятнышек-колоний — серых, жёлтых, зелёных. Он собрал образцы с каждой колонии и увидел в микроскопе, что каждое пятнышко — это колония одного вида микробов! В жидкой среде микробы смешивались и разделить их было чрезвычайно сложно. А на твёрдой среде оставались на одном месте, размножались и давали чистую культуру!


    Случайное наблюдение Коха сделало революцию: свежий картофель стал одной из первых твёрдых сред для выращивания микроорганизмов. Однако такой питательный субстрат подходит не для всех микробов, поэтому поиски альтернативной твёрдой среды продолжались.

    Кох вновь с усердием принялся выращивать туберкулёзную культуру. На срезах картофеля бактерия не росла. Тогда он стал использовать желатин, чтобы превращать бульон в твёрдую питательную среду. После многих неудачных попыток Кох добавил в среду и кровяную сыворотку, чтобы воссоздать условия живого организма. Через 15 дней (небывало долго для бациллы сибирской язвы) на поверхности среды показались капельки колоний опасной туберкулёзной палочки.


    Микроорганизмы делятся каждые 20 минут, поэтому уже через 3 часа после пересаживания микробов на чашке Петри можно увидеть колонии, а через сутки количество бактерий в них исчисляется миллионами.

    Александр Флеминг придумал новый вид искусства — рисование бактериями на твёрдой среде. Флеминг, будучи членом художественного клуба Челси, изобрёл любительские акварели. Учёный рисовал бактериями изящных балерин, роскошные дома, солдатов. Создание картины требовало аккуратности: нужно не только найти бактерии с разными пигментами, но и подобрать время выращивания, чтобы одноцветные вырастали одновременно и не нарушали границы цвета.


    Американское сообщество микробиологии (ASM), вдохновившись примером Флеминга и его коллег, проводит с 2015 года фестиваль Agar Art Competition. ­Талантливые микробиологи и художники рисуют настоящие картины. Некоторые придумывают свои сюжеты, другие воспроизводят картины мастеров, например, «Звёздную ночь» Ван Гога.


    В 1928 году британский бактериолог Александр Флеминг обнаружил, что на агаре в одной из чашек Петри по соседству с бактериями выросла колония плесневых грибов. Бактериальные колонии вокруг плесневых побледнели — их клетки были разрушены. Флеминг выделил из плесневых грибов вещество, разрушающее клетки бактерий — пенициллин, первый антибиотик. Открытие Флеминга изменило не только медицинскую науку, но и судьбу многих, казалось бы, безнадёжных пациентов.

    В то время единственной лабораторной склянкой, которая годилась для выращивания микробов, была пробирка. Но обращение с ней требовало сноровки: если положить пробирку горизонтально — незастывшая среда прольётся, поставить под углом — может упасть и разбиться. Шанс заразиться опасной болезнью множился на глазах! Тогда Кох и его лаборанты придумали заливать питательную среду в чашки и накрывать высокими стеклянными колпаками. Но чтобы посмотреть на колонии, колпак приходилось снимать, а это прямой путь заражения. Тогда-то и наступил звёздный час одного из лаборантов — Юлиуса Петри. Он уменьшил высоту стенок чашки, в которой выращивали микробов, оставив невысокие бортики. А вместо огромного колпака накрыл ещё одной прозрачной чашкой — так наблюдать за колониями оказалось удобнее.

    Петри проработал под руководством Коха всего пару лет (1877–1879), но за это время кардинально повлиял на будущее микробиологии. Инновация Юлиуса Петри дала сильнейший толчок медицине и спасла миллионы жизней. После работы под началом Роберта Коха он возглавил санаторий Гоберсдорф — первый европейский центр для лечения больных туберкулёзом.

    В лаборатории Коха появилась не только чашка Петри, но и стандартное наполнение к ней — агаризованная питательная среда. Её предшественница — среда, содержащая желатин — легко плавилась при нагревании, как холодец, поставленный в тёплое место. Колонии на такой среде превращались в кашу.

    Среду на основе агара придумал ­ Уолтер Гессе, ещё один лаборант Коха. Он поступил на службу вместе с женой Фанни. Она не значилась сотрудником лаборатории, но выполняла работу научного иллюстратора — зарисовывала микроорганизмы, которые видела в микроскоп.

    Однажды Фанни приготовила желе. Гессе заметил, что оно не тает на солнце и сохраняет форму. Он выяснил, что основной компонент желе — агар-агар — вещество, которое добывают из красных и бурых водорослей. Уолтер заменил им стандартный желатин, и бактериальные питательные среды стали твёрже. Агар-­агар и сегодня используют для приготовления сред, но его особым образом очищают.


    Для определения эффективности антибиотиков в фармацевтичес­кой промышленности используют специальные тесты. Например, метод диффузии в агар. В чашки Петри засевают микроорганизмы. На засеянную поверхность на равном расстоянии друг от друга помещают диски, содержащие определённые дозы разных антибиотиков. Чем больше радиус зоны подавления роста, тем эффективнее препарат против данного микроорганизма.

    Сначала чашку Петри использовали только для выращивания культур клеток, но сейчас эта посуда применяется в разных областях науки. Например, на чашках Петри изучают эффективность антибиотиков, их используют для исследования безопасности пищевых продуктов и выращивания генно-инженерных бактерий, которые синтезируют необходимый больным диабетом инсулин.

    Чашки Петри делают разных размеров и из самых разных материалов — стекла, пластика и даже нержавеющей стали. Для работы учёный может подобрать подходящую.

    в пищевой промышленности

    Bacillus cereus

    Впервые этиологическая роль Bacillus cereus при пищевых отравлениях была изучена и описана Hauge в 1950 г.

    Сначала источником пищевых отравлений, обусловленных Вас. cereus, считали кулинарные изделия, содержащие картофельный крахмал. Затем были описаны вспышки пищевых отравлений этой этиологии, обусловленные растительными, мясными, мясо-растительными, рыбными и другими пищевыми продуктами. Особенно быстро Вас. cereus размножается в измельченных продуктах (фарш, котлеты, колбаса, кремы). При накоплении этого микроба изменяются органолептические свойства продукта: на поверхности образуется сероватая пленка, изменяются цвет и запах.

    Одни исследователи из-за отсутствия возбудителя в испражнениях и короткого инкубационного периода (6—14 ч) определяли пищевые отравления, вызванные Вас. cereus, как интоксикации, другие же это связывали с антагонизмом кишечной микрофлоры и отсутствием специальных питательных сред для выделения Вас. cereus. Некоторым исследователям удалось выделить Вас. cereus из испражнений больных, используя среды, содержащие спирт.

    В последнее время патогенез пищевых отравлений, обусловленных Вас. cereus, объясняют следующим образом. Считают, что в результате выделения этим микробом фермента лецитиназы образуются продукты расщепления лецитина (фосфохолин и пр.), оказывающие токсическое действие на организм. Кроме того, при парентеральном заражении мышей была отмечена высокая патогенность штаммов Вас. cereus, выделенных при пищевых отравлениях, и установлено наличие термостабильного энтеротропного и термолабильного нейротропного токсина.

    Количественный фактор в возникновении пищевых отравлений, вызванных Вас. cereus, имеет такое же значение, как и при отравлениях, обусловленных кишечной палочкой.

    Морфология . Вас. cereus — палочка длиной 8 мкм, шириной 0,9—1,5 мкм, подвижная, образует споры. Отдельные штаммы этого микроба могут образовывать капсулу. Грамположительная.

    Культуральные свойства . Вас. cereus — аэроб, но может развиваться и при недостатке кислорода воздуха. На МПА вырастают крупные, распластанные, серовато-беловатые колонии с изрезанными краями, некоторые штаммы образуют розовато-коричневый пигмент; на кровяном агаре — колонии с широкими, резко очерченными зонами гемолиза; на МПБ — образует нежную пленку, пристеночное кольцо, равномерное помутнение и хлопьевидный осадок на дне пробирки. Все штаммы Вас. cereus интенсивно растут при рН от 9 до 9,5; при рН 4,5—5 прекращают свое развитие. Оптимальная температура развития 30—32°С, максимальная 37—48°С, минимальная 10°С.

    Ферментативные свойства . Вас. cereus свертывает и пептонизирует молоко, вызывает быстрое разжижение желатина, способен образовывать ацетилметилкарбинол, утилизировать цитратные соли, ферментирует мальтозу, сахарозу. Некоторые штаммы способны расщеплять лактозу, галактозу, дульцит, инулин, арабинозу, глицерин. Маннит не расщепляет ни один штамм.

    Устойчивость . Вас. cereus относится к микроорганизмам, чрезвычайно широко распространенным в природе. Основной средой его обитания является почва. Лучше Вас. cereus развивается в почвах с нейтральной или слабощелочной реакцией. Из почвы микроб попадает в воздух и водоемы, на пищевые продукты. Размножение начинается при 17—18°С, наиболее интенсивно — при 32°С. Вас. cereus часто обнаруживают в пастеризованном молоке (до 86%. исследованных проб), в консервах (до 11,6%) и др. Микроб может развиваться при концентрации поваренной соли в среде до 10-15%, сахара —до 30—60%. Продукты с рН 4,5 и ниже являются неблагоприятной средой для развития Вас. cereus. На жизнедеятельность Вас. cereus кроме рН влияет и вид кислоты. Наибольшим бактериостатическим действием обладает уксусная кислота. Задержка роста Вас. cereus этой кислотой наблюдается при рН 4,5 и даже 6,0. Подкисление продуктов другими кислотами задерживает рост только при рН 4,0.

    Патогенность . При заражении белых мышей большими дозами Вас. cereus они погибают. В то же время он непатогенен в отличие от Вас. anthracis для морских свинок и кроликов. Вас. cereus выделяет фермент лецитиназу, являющийся фактором вирулентности. Наличие этого микроорганизма в продуктах может вызывать пищевые отравления. Вас. cereus может вызвать мастит у коров.

    Диагностика . Учитывая количественный фактор в патогенезе пищевых отравлений, вызываемых Вас. cereus на первом этапе микробиологического исследования проводят микроскопию мазков (окраска мазков по Граму). Наличие в мазках грамположительных палочек толщиной 0,9 мкм позволяет поставить ориентировочный диагноз: «споровый аэроб группы 1а». По современной классификации в группу 1а входят Вас. anthracis и Вас. cereus. При выяснении этиологии пищевых отравлений большое значение имеет дифференциация Вас. cereus и Вас. anthracis, так как кишечная форма сибирской язвы, вызываемая Вас. anthracis, по клиническим признакам может быть принята за пищевое отравление.

    Второй этап микробиологического исследования проводят в том случае, если количество обнаруженных при микроскопии палочек достигает в 1 г продукта 10 8 .

    Затем, по результатам микроскопии патологический материал высевают на кровяной агар в чашки Петри и инкубируют при 37°С в течение 1 сут. Наличие широкой, резко очерченной зоны гемолиза позволяет поставить предварительный диагноз на присутствие Вас. cereus. Для окончательной идентификации производят посев выросших колоний в среду Козера и углеводную среду с маннитом. Ставят пробу на лецитиназу, ацетилметилкарбинол и проводят дифференциацию Вас. anthracis и других представителей рода Bacillus. Вас. anthracis отличается от Вас. cereus рядом характерных признаков: рост в бульоне и желатине, способность образовывать капсулу в организмехи на средах, содержащих кровь или кровяную сыворотку.

    Кроме вышеописанных методов применяют экспресс-методы дифференциации Вас. anthracis от Вас. anthracoides, Вас. cereus и других: феномен «ожерелья», пробу с сибиреязвенным бактериофагом, реакцию преципитации — и проводят люминесцентную микроскопию. Можно использовать также цитопатогенный эффект фильтрата Вас. cereus на клетки культур тканей (фильтрат Вас. anthracis такого эффекта не оказывает).

    От других сапрофитных споровых аэробов Вас. cereus отличается по ряду свойств: способность образования лецитиназы, ацетилметилкарбинола, утилизация цитратных солей, ферментация маннита и рост в анаэробных условиях на среде с глюкозой. Особенно важное значение придают лецитиназе.

    Образование на кровяном агаре зон гемолиза не является постоянным признаком у Вас. cereus. так как некоторые штаммы и разновидности Вас. cereus (например, Var. sotto) не вызывают гемолиза эритроцитов, в то время как многие другие виды споровых аэробов обладают этим свойством.

    Сибирская язва (углевик)



    Сибирская язва (углевик) – это острое инфекционное зоонозное заболевание, характеризующееся тяжелой интоксикацией, лихорадкой и протекающее в кожной, легочной и кишечной формах.

    Историческая справка.

    Сибирская язва известна с давних времен. Еще в Библии описана болезнь, симптомы которой напоминают сибирскую язву. Со времен Гомера, Галена, Цельса и Виргилия, болезнь фигурирует под названием «священный огонь» (ignis sacer) или «персидский огонь» (ignis persicus).

    Первые сообщения о сибирской язве в России можно найти в Никоновской летописи (979 г.). В связи с сильными эпизоотиями в 1640 г. вышел царский указ, запрещавший снимать шкуры с павших животных, а трупы закапывать глубоко в землю. С.С. Андреевский, изучивший заболевание во время эпидемии на Урале (1786-1788 гг.), дал ему название «сибирская язва», а в 1788 г. путем самозаражения доказал единство этиологии сибирской язвы у людей и животных. Возбудитель был открыт А. Поллендером в 1849 г.. Чистую культуру возбудителя получил Р. Кох (1876 г.), а в 1881 г. Л. Пастер создал живую вакцину для иммунопрофилактики заболевания. В 1902 г. Асколи разработал диагностическую реакцию кольцепреципитации.

    Семейство – Bacillaceae

    Род – Bacillus

    Вид – Bacillus anthracis (от греч. аnthrax – уголек)

    Очень крупные палочки с обрубленными концами размером 5-10×1-2 мкм; жгутики отсутствуют; в организме человека и животных, а также на питательных средах с кровью образуют макрокапсулу белковой природы; в присутствии О 2 формируют центрально расположенные овальной формы споры; грамположительные; в мазках располагаются цепочками с утолщениями на концах (напоминают «бамбуковую трость»); обработка культур пенициллином приводит к разрушению клеточной стенки и образованию цепочек, состоящих из протопластов (в виде «жемчужного ожерелья»); споры окрашиваются по методу Ожешко в красный цвет; капсула выявляется по методу Бури-Гинса и Романовского-Гимзе.

    Культуральные свойства.

    Факультативный анаэроб, оптимальная температура культивирования 35-37 0 С, рН 7,2-7,6, хорошо растет на обычных питательных средах (МПА, МПБ). Через 17-24 часа образует R-форму колоний – серебристые крупные зернистые колонии, от краев отходят пучки нитей (в виде «головы Медузы» или «львиной гривы»), редко – S- и М-формы. На бульоне растет в виде ватных хлопьев, не вызывая помутнения среды. Дает характерный рост при посеве уколом в желатин – в виде «перевернутой елочки». На кровяном агаре гемолиза не дает.

    Биохимическая активность.

    Ферментирует большинство сахаров (глюкозу, сахарозу, декстрин, трегалозу, фруктозу, крахмал) до кислоты без газа. Положительная реакция Фогес-Проскауэра (образует ацетилметилкарбинол при ферментации глюкозы с окрашиванием среды в красный цвет). Разжижает желатин, восстанавливает нитраты в нитриты, образует сероводород и аммиак, индол не образует, пептонизирует молоко.

    Антигенная структура.

    1. О-антиген – соматический, термостабильный липополисахарид клеточной стенки, группоспецефический (выявляется в реакции колцепреципитации по Асколи).

    2. К-атиген – капсульный, полипептидный, видоспецифический.

    3. Протективный антиген – белковый токсин – обладает выраженными иммуногенными свойствами, т.к. к нему образуются антитела, обладающие защитными свойствами.

    Факторы патогенности.

    Токсины. Bacillus anthracis выделяет экзотоксин, имеющий сложную структуру – состоит из трех компонентов: протективного антигена, летального и отечного факторов.

    Протективный антиген – взаимодействует с мембранами клеток и опосредует проявление активности других компонентов.

    Летальный фактор («мышиный токсин») – проявляет цитотоксический эффект и вызывает отек легких.

    Отечный фактор – повышает концентрацию цАМФ, вызывая развитие отеков.

    Эти компоненты по отдельности токсическое действие не проявляют!

    Синтез экзотоксина контролируется плазмидой.

    Ферменты – протеазы, обеспечивающие инвазию и приводящие к деструкции тканей.

    Структурные и химические компоненты клетки: капсула (участвует в адгезии и защищает от фагоцитов), споры (обеспечивают длительное сохранение во внешней среде).

    Резистентность.

    Вегетативные формы малоустойчивы. Напротив, споры – очень устойчивы во внешней среде: при 100С – более 1 часа, автоклавирование при 121С – 15-20 минут, сухой жар при 140С – 2-3 часа; дезинфицирующие средства (10% раствор формалина и 5% раствор карболовой кислоты) – 6-8 часов; в почве, в шкурах зараженных животных – сохраняются десятилетиями (30 и более лет). Чувствительны к стрептомицину, левомицетину, тетрациклину и другим антибиотикам.

    Эпидемиология.

    Типичный зооноз. Среди животных наиболее восприимчивы травоядные (КРС, лошади, свиньи). Животные заражаются при заглатывании спор во время выпаса или при поедании загрязненных кормов.

    Источник инфекции – больные животные (выделяют возбудителя сибирской язвы с мочой и испражнениями). Значительную эпидемиологическую опасность представляют скотомогильники, особенно если трупы животных, павших от сибирской язвы были зарыты без надлежащих предосторожностей.

    Пути передачи:

    - Прямой контактный (при контакте с инфицированным материалом – уходе за больными животными, убое, разделке туш);

    - Алиментарный (при употреблении в пищу мяса больных животных);

    - Воздушно-капельный, воздушно-пылевой (при вдыхании спор возбудителя);

    -Возможен трансмиссивный путь (через укусы кровососущих насекомых – слепней и мух).

    Инкубационный период – 2-3 суток.

    Патогенез и клинические особенности.

    В зависимости от места входных ворот выделяют:

    Кожная форма (чаще) – во входных воротах сначала больные отмечают усиливающийся кожный зуд, затем появляется красноватое пятно, быстро трансформирующееся в папулу медно-красного цвета, через несколько часов на месте папулы образуется везикула с серозно-геморрагическим содержимым, из-за сильного зуда больные часто срывают везикулу, либо она лопается сама, и на ее месте образуется черный увеличивающийся в размерах струп (напоминает уголек), струп окружен инфильтратом в виде багрового вала. Кожная форма сопровождается повышением температуры тела до 39-40 0 С, длится примерно 5-6 дней, летальность не более 5%.

    Легочная форма – протекает очень тяжело, развивается пневмония по типу отека легких, в большинстве случаев заканчивается летально (смерть наступает на 2-3 сутки вследствие сердечно-сосудистой недостаточности).

    Кишечная форма – проявляется повышением температуры до 39-40 0 С, рвотой и диареей с кровью, заканчивается летально в 100% случаев.

    При всех формах возможно развитие диссеминированной инфекции.

    Постинфекционный иммунитет – гуморальный антимикробный и антитоксический напряженный (повторные заболевания возможны, но редко). Развивается ГЗТ.


    Микробиологическая диагностика.



    Лабораторная диагностика.

    Наиболее достоверным является бактериологическое исследование,заканчивающееся выделением чистой культуры возбудителя и ее идентификацией с использованием теста «жемчужного ожерелья», которое появляется на питательном агаре с пенициллином вследствие превращения бактерий в протопласты. Для выявления зараженности сырья (меховых шкурок,кожи и т.д.) используют реакцию термопреципитации Асколи. Для определения зараженных животных используют кожно-аллергическую пробу

    Специфическая профилактика.

    Проводится вакцинация по эпидпоказаниям, а также планово – группам риска (военным, животноводам) живой сибиреязвенной сухой вакциной СТИ (высушенная взвесь живых безкапульных Bacillus anthracis) или комбинированной вакциной (СТИ+протективный антиген).

    Неспецифическая профилактика (большая роль):

    - Изоляция больных животных;

    - Сжигание трупов погибших животных;

    - Санитарный надзор за предприятиями, перерабатывающими животное сырье и т.д.

    Специфическое лечение – лошадиный противосибиреязвенный иммуноглобулин.

    Таксономия. Возбудитель сибирской язвы Вacillus anthracis включен в семейство Bacillaceae, род Bacillus. Возбудитель сибирской язвы был открыт Паллендером в 1849 г. Большой вклад в изучение этого заболевания внесли Р. Кох, Л. Пастер и Л.С. Ценковский.

    Морфология. Возбудители сибирской язвы – крупные палочки 6-8х1 – 1,5 мкм с обрубленными или несколько вогнутыми концами, грамположительны стрептобациллы. В организме они располагаются попарно или в виде коротких цепочек. На питательных средах встречаются длинные цепочки, напоминающие бамбуковую трость с коленчатыми сочленениями. Бациллы сибирской язвы неподвижны. В организме человека, животных и при выращивании на специальных средах (бикарбонатный агар) они образуют капсулу, окружающую одну, две особи или всю цепочку. Бациллы сибирской язвы при неблагоприятных условиях внешней среды и при выращивании на питательных средах с низким содержанием питательных веществ образуют споры овальной формы, расположенные в центре и не превышающие поперечника микробной клетки. Спорообразование лучше всего происходит при доступе кислорода и температуре 30-40 0 С. При температуре выше 43 0 С и ниже 15 0 С спорообразование прекращается. В период образования спор цитоплазма клетки почти полностью лизируется, клеточная стенка разрывается и спора выходит наружу.

    Культивирование. Возбудители сибирской язвы – факультативные анаэробы. Неприхотливы. Растут при температуре 35-38 0 С (но могут расти в диапазоне от 12 до 42 0 С) и рН среды 7,2-7,6. На МПА образуют крупные, серебристо-серые, шероховатые, матовые, зернистые колонии диаметром 3-5мм с неровными бахромчатыми краями, которые состоят из нитей сибиреязвенных бацилл, отходящих от центральной части колонии (R-форма). При малом увеличении край колонии имеет вид локонов волос и вид колонии напоминает голову медузы, растрепанный парик или львиную гриву. R-форма является характерной для вирулентных штаммов сибиреязвенных бацилл. В старых культурах появляются гладкие S-формы колоний – не вирулентные. На бикарбонатном агаре дает S- формы (крупные, беловатые, блестящие, слизистые колонии с неровными краями). В бульоне рост сибиреязвенных бацилл характеризуется придонным ростом. На дне пробирки образуется хлопчатый осадок в виде комка ваты, при этом среда остается прозрачной.

    При посеве на 10-12% желатин после 2-3 дневной инкубации при температуре 22 0 С появляется рост по ходу укола в виде белых тяжей, уменьшающихся книзу (вид опрокинутой елочки), на 3-5 день желатин разжижается, начиная с поверхности, в виде воронки (пептонизация) и на дне ее скапливается белый осадок.

    При посеве на МПА с 0,5 и 0,05 ЕД/мл пенициллина наблюдается распад бацилл на шары из утраты пептидогликана, цепь из которых напоминает жемчужное ожерелье. На кровяных средах гемолиза не наблюдается, либо очень редко и медленно (в бульоне) в отличие от сапрофитов, дающих быстрый гемолиз через 10-12 часов при 37 0 . На жидкой яичной среде, как правило, не свертывают желток в течение 5-6 суток. Характер роста на средах имеет диагностическое значение ( см. рис.).

    Ферментативные свойства. Сибиреязвенные бациллы обладают выраженной ферментативной активностью. Сахаролитические свойства: расщепляют глюкозу, лактозу, мальтозу, левулезу и другие сахара до образования кислоты.

    Протеолитические свойства выражаются в пептонизации молока, разжижении желатина, свертывании молока (медленно). Они образуют сероводород и аммиак, переводят нитраты в нитриты, гидролизируют крахмал и т.д. Не гемолизируют эритроциты, чем отличаются от антракоида. Лизируются противосибиреязвенным фагом. Сибиреязвенные бациллы образуют ферменты: диастазу, протеазу, пероксидазу, липазу, но не выделяют фосфотазу.

    Токсинообразование и факторы агрессии. B. anthracis образует экзотоксин, состоящий из 3 факторов: 1) воспалительный и отекотворный; 2) иммуногенный (протективный); 3) летальный. Этот токсин называют «мышиный токсин» (ввиду высокой чувствительности мышей). Экзотоксин продуцируется в процессе развития инфекции и при определенных условиях их культивирования. Большая роль в вирулентности сибиреязвенных бацилл принадлежит капсуле, которая обладает антифагоцитарным действием.

    Антигенная структура. Бациллы сибирской язвы содержат антигены: 1) соматический (полисахаридный), который находится в клеточной стенке микроба. Термоустойчив. Против этого антигена антитела не продуцируются. Этот антиген длительно сохраняет в культурах и трупном материале. На его обнаружении основана реакция преципитации Асколи; 2) капсульный (протеиновый) антиген, обуславливающий антифагоцитарное действие; 3) антиген экзотоксина. Находясь в организме или на средах, содержащих экстракты тканей, бациллы сибирской язвы вырабатывают 4) протективный термолабильный антиген, который является атоксичным, но обладает иммунизирующей способностью.

    У сибиреязвенных бацилл имеется общий антиген с антракоидом и другими спорообразующими сапрофитами (B. subtilis, B. ereus и др.).

    Устойчивость к факторам окружающей среды. Вегетативные формы возбудителей сибирской язвы малоустойчивы. При 100 0 С они погибают мгновенно, температура 55-60 0 С губит их через 30-40 минут. Устойчивы к низким температурам, УФО. Обычные концентрации дезинфицирующих растворов убивают их через несколько минут. Капсулы сибиреязвенных бацилл обладают большой устойчивостью. При исследовании трупов животных, подвергнутых действию гнилостной микрофлоры, можно обнаружить пустые капсулы без тела («тени» микроорганизмов). Споры устойчивы: они выдерживают кипячение на протяжении 20-60 минут, УФО – 20 и более суток. Автоклавирование (120 0 С) убивает их через 20 минут. В сухом состоянии в почве сохраняются 30-50 лет. Обычные растворы дезинфицирующих веществ губят их через 2-3 суток

    Восприимчивость животных. К сибиреязвенным бациллам чувствительны козы, буйволы, верблюды, ослы, коровы, овцы, лошади, олени, свиньи и травоядные дикие животные, редко собаки, кошки, дикие хищные животные. Резервуар инфекции – инфицированная почва. Эпизоотии начинаются с пастбищным содержанием животных, входными воротами у них являются верхние дыхательные пути и легкие, куда попадают споры из почвы. А затем инфекция может передаваться от больных животных к здоровым трансмиссивно через укусы слепней и других насекомых. Из лабораторных животных наиболее восприимчивы белые мыши, морские свинки, кролики. Эти животные после заражения погибают через 2-4 суток от септицемии. На месте введения наблюдаются отек и гиперемия. Кровь у погибших животных густая и темно-красного цвета, так как сибиреязвенные бациллы обладают антикоагулирующим действием.

    Эпидемиология и клинические формы сибирской язвы:

    Сибирская язва – особо опасное инфекционное заболевание из группы инфекций кожных покровов и слизистых оболочек. Название болезни – anthrax «углевик» дано русским врачом Андриевским, который в конце XVIII века изучал это заболевание в Сибири во время большой эпизоотии среди коров. Кроме того, это заболевание получило ещё название «болезнь тряпичников». Сибирская язва – зоонозное заболевание, эпизодически встречаемое повсеместно. Заболеваемость сибирской язвой среди людей носит спорадический характер. Болеют, главным образом, чабаны, доярки, зоотехники, ветеринары, рабочие мясокомбинатов и предприятий, обрабатывающих сырьё животных.

    Источники заболевания - больные сельскохозяйственные животные, данных о передаче сибирской язвы от больного человека к здоровому в мировой практике нет. Факторами передачи являются мясопродукты и сырье (кожа, шерсть, кости).

    Пути передачи. Контактно-бытовой (уход за животными, убой, разделка, снятие шкур, захоронение трупов, контакт с инфицированной продукцией животноводства и инфицированной почвой), воздушно-пылевой, пищевой (при использовании продуктов, зараженных бациллами сибирской язвы).

    Человек от человека обычно не заражается, тем не менее при заболевании человека сибирской язвы принимаются все необходимые меры предосторожности.

    Иммунитет. Довольно стойкий, антимикробный и антитоксический, зависящий от образования протективных антител. Большая роль принадлежит фагоцитарной реакции. В сыворотке переболевших сибирской язвой обнаруживаются антитела, разрушающие капсульную субстанцию бацилл.

    При сибирской язве развиваются гиперчувствительность, регистрируемая в аллергической пробе с антраксином.

    Профилактика. Все мероприятия по предупреждению сибирской язвы проводят совместно с ветеринарной службой. Они предусматривают своевременное выявление, изоляцию больных животных, тщательную дезинфекцию территории.

    Специфическая профилактика. В настоящее время используют вакцины СТИ, которая была изготовлена в 1942 г. Н.Н. Гинсбургом из бескапсульной культуры, химическую вакцину, с протективным сибиреязвенным антигеном, комбинированную (содержит споры, ослабленных штаммов возбудителя и протективные антигены, сорбированные на геле гидроксида аллюминия), рекомбинантную, полученную на основе В. suptilis и лактобацилл, в геном которых внесены гены протективного антигена В. anthracis. Вакцинируют обычно людей, которые по характеру своей работы связанны с сельскохозяйственными животными. Для экстренной профилактики (людям, контактировавшим с больными животными) вводят противосибиреязвенный иммуноглобулин и антибиотики.

    Лечение:противосибиреязвенный иммуноглобулин, антибиотики: пенициллин, хлор тетрациклин в комплексе с аминогликозидами.

    Вопросы для самоконтроля

    1. Кем был открыт и описан первый возбудитель бруцеллеза?

    2. Какие виды бруцелл патогенны для человека?

    3. Каковы особенности морфологии бруцелл?

    4. На какие питательные среды высевают исследуемый материал при диагностике бруцеллеза?

    5. Чем обусловлена патогенность бруцелл?

    6. Каковы резервуары и источники инфекции при бруцеллезе?

    7. Какие фазы выделяют в патогенезе бруцеллеза?

    8. Какова продолжительность инкубационного периода при бруцеллезе?

    9. Каковы основные симптомы бруцеллеза?

    10. Какие осложнения развиваются при перенесении бруцеллеза?

    11. Как осуществляется специфическая профилактика бруцеллеза?

    12. Какие препараты используются для лечения бруцеллеза?

    13. К какому семейству и роду относится возбудитель сибирской язвы?

    14. Каково латинское название возбудителя сибирской язвы?

    15. Какие другие названия имеет заболевание сибирской язвой?

    16. Какую форму имеет возбудитель сибирской язвы?

    17. Как он окрашивается по Граму?

    18. Характерно ли спорообразование для B. anthracis?

    19. Какие методы окраски применяют для выявления спор?

    20. Как располагаются споры у сибиреязвенных бацилл?

    21. Какую форму они имеют?

    22. При каких условиях сибиреязвенные бациллы образуют споры?

    23. Как располагается возбудитель сибирской язвы в мазке?

    24. Подвижен ли возбудитель сибирской язвы?

    25. Характерно ли капсулообразование для Bacillus anthracis?

    26. При каких условиях возбудитель сибирской язвы образует капсулу?

    27. Какие методы окраски используют для выявления капсул?

    28. Требовательны ли сибиреязвенные бациллы к питательным средам?

    29. Широк ли температурный диапазон их культивирования?

    30. Какие среды применяют для культивирования сибиреязвенных бацилл?

    31. Что напоминают колонии возбудителя сибирской язвы на плотных питательных средах?

    32. Могут ли сибиреязвенные бациллы давать S – формы колоний?

    33. Какой тип колоний B. anthracis является вирулентным?

    34. Какие особенности роста возбудителя сибирской язвы на МПБ?

    35. Каков характер роста B. anthracis на 10-20% желатине?

    36. Какое действие оказывает пенициллин на форму сибиреязвенных бацилл при выращивании их на МПА с пенициллином?

    37. Вызывает ли возбудитель сибирской язвы гемолиз при культивировании его на кровяных средах?

    38. Какой токсин продуцирует B. anthracis?

    39. Из каких трех факторов он состоит, и каким действием обладает каждый фактор?

    40. Перечислите антигены, имеющиеся у возбудителя сибирской язвы.

    41. Кто может быть источником инфекции при сибирской язве?

    42. Каковы пути передачи заразного начала при сибиреязвенной инфекции?

    43. Какие клинические формы сибирской язвы Вы знаете?

    44. Каковы клинические проявления каждой из этих форм?

    Какие вакцины используются для специфической профилактики сибирской язвы?

    | следующая лекция ==>
    Возбудители бруцеллеза | СВОЙСТВА ВОЗБУДИТЕЛЕЙ СИБИРСКОЙ ЯЗВЫ

    Дата добавления: 2014-01-04 ; Просмотров: 2002 ; Нарушение авторских прав?

    Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет







    Основным источником инфекции являются больные травоядные животные, от которых человек заражается при непосредственном контакте, алиментарным, аэрогенным или трансмиссивным путями. Чаще всего возникает кожная форма инфекции с образованием характерного сибиреязвенного карбункула в виде уголька (anthrax), реже – кишечная, легочная, септическая формы. Методы микробиологической диагностики сибирской язвы отражены в схеме 6.

    Схема 6. Микробиологическая диагностика сибирской язвы



    Микроскопический метод.Мазки из исследуемого материала окрашивают по Граму, Романовскому-Гимзе, Ребитеру (капсула), а также люминесцирующей сибиреязвенной сывороткой. Обнаружение в препаратах окруженных капсулой крупных грамположительных ба­цилл в виде цепочек дает возмож­ность поставить предварительный диагноз сибирской язвы (рис.11 а). В качестве экспресс-метода диагностики применяется РИФ, с помощью которой выявляют характерные сибиреязвенные бациллы в виде палочек со светящимся жел­то-зеленым ободком (рис. 11 б.).

    Бактериологический метод -посев исследуемого материала на МПА, кровяной агар в чашках Петри или PLET-arap с полимиксином В, лизоцимом, этилен-диаминотетраацетатом (ЭДТА) и ацетатом таллия. Контаминированный мате­риал из внешней среды, от животных, из старых трупов предварительно прогревают при 63 °С в течение 15 мин с целью уничтожения вегетативных форм микроорга­низмов. Посевы помещают в термостат на сутки. Через 20 —24 ч инкубации посевов при 37 0 С на МПА обнаруживают характерные шероховатые колонии в виде «головы меду­зы», края которых при малом увеличении микроскопа имеют вид вьющихся локонов или «львиной гривы» - рис. 12. В бульоне характерен при­донный рост, напоминающий комочек ваты, при этом среда остается про­зрачной. Из осадка делают мазок и препарат висячей капли. В мазке обнаруживают бескапсульные грамположительные стрептобациллы (рас­положение в виде длинных цепочек в виде «бамбуковой палки»). В отличие от других почвенных бацилл возбудитель сибирской язвы неподвижен. Для выде­ления чистой культуры типичные колонии пересевают на ско­шенный МПА.

    Капсулообразование можно выявить путем биопробы или при посевах в бульон Хоттингера, на специальную среду, содержащую раствор Хенкса и 40 % стерильной сыворотки крупного рогатого скота, МПА с 0,7 % бикарбоната натрия, среду Буза (3%голодный агар с 15% дефибринированной крови барана), а также в дефибринированную лошадиную кровь. Посевы выращивают в течение 18-24 часов при температуре 37 0 С в атмосфере 5-7% СО2.



    А б

    Рис. 11. Возбудитель сибирской язвы(Bacillus anthracis). а - окраска по Граму, б – РИФ. х630


    Рис. 12. Колония Bacillus anthracis. х56

    Идентификацию выделен­ной культуры Bacillus anthracis (3-й день исследования) и ее дифференциацию от сходных непатогенных бацилл проводят путем посева уколом в желатину (разжижение в виде елочки, перевернутой вершиной вниз), изучения биохимических свойств, фаголизабельности и заражения животных. Определяют также чувствительность культуры к ан­тибиотикам.

    Одним из характерных признаков возбудителя сибирской язвы является тест «жемчужного ожерелья».На поверхность МПА в чашке Петри с 0,5 и 0,05 ЕД/мл пенициллина засевают 3-ча­совую бульонную культуру выделенного микроорганизма, через 3 ч инкубирования при 37 0 С готовят мазки, в которых при микроскопии находят «жемчужные ожерелья» в виде округлившихся стрептобацилл сибирской язвы. Почвенные ба­циллы сохраняют форму палочек, расположенных цепочками.

    Биологические свойства возбудителя сибирской язвы и сходных с ним бацилл отражены в табл. 7.

    Наличие сибиреязвенного антигенав разложившемся трупе жи­вотного, коже (свежей, сухой, выделанной) и изделиях из нее, шкурках, мехе, шерсти определяют с помощью реакциитермо­преципитациипо Асколи.Исследуемый материал измельчают, за­ливают 10 —20-кратным объемом физиологического раствора, кипятят в течение 10-45 мин., после чего фильтруют. Полученный экстракт осторожно наслаивают на преципитирующую сибиреязвенную сыворотку в узкой преципитационной пробирке. На границе экстракта и преципитирующей сыворотки в течение 1- 5 мин в случае положительной реакции появляется кольцо белого цвета (преципитат). Контроли включают постановку реакций с заведомо положительной и отрицательной сывороткой, нормальной сывороткой и т.д.

    Биопроба.Исследуемымматериалом подкожно заражают двух белых мышей., которые погибают через 24-48 ч после заражения. В мазках из внутренних органов и крови обнаружива­ют типичные капсульные бациллы. Проводится бактериологическое исследование трупа белой мыши с целью выделения чистой культуры сибиреязвенных бацилл.

    Таблица 7. Дифференциально-диагностические признаки сибиреязвенной и других бацилл

    Признак Вид микроорганизмов
    Bacillus anthracis Bacillus cereus Bacillus mycoides Bacillus thuringiensis Bacillus subtilis Bacillus Megaterium
    Капсула + - - - - -
    Подвижность - + - + + +
    Гемолиз - + - + - +
    Рост в анаэробных условиях + + + + - -
    Лецитиназа + + + + - -
    Аргининдегидролаза - V V + - -
    Нитpaтpeдyктaзa + + + + + -
    Патогенность для мышей + - - - - -
    Ферментация до кислоты:
    глицерина - V + + + +
    маннита - - - - + +
    салицина - V + + + +

    Обозначения: «-« - отрицательная; «+» - положительная; «V» - вариабельная реакции.

    Серологический методвыполняетсяв тех случаях, когда не удается обнаружить возбудителя в материале. Для определения антител в сыворотке крови больного использу­ют реакции латекс-агглютинации и РНГА с протективным сибиреязвенным антигеном.

    Аллергический метод – постановка внутрикожной аллергической пробы с аллергеном сибиреязвенной бациллы - антраксином. Результаты учитывают через 24 ч. Пробу считают положительной при наличии гиперемии и инфильтрата диаметром более 15 мм.

    В 1872 году, Роберт Кох, будущий великий микробиолог, был назначен санитарным врачом в Вольштейне (ныне Вольштын в Польше), где в то время свирепствовала сибирская язва. Эта болезнь была известна с древности под названием «священный огонь»: люди считали, что только разгневанные боги могли послать на землю такую кару. Сибирская язва была угрозой для всего сельского хозяйства — чаще всего заболевал домашний скот. Однако гибли не только животные, но и люди: фермеры, пастухи, доярки.

    Рассматривая в микроскоп кровь погибших животных, Кох обнаружил, что в развитии болезни виноват только один микроб — бацилла (Bacillus anthracis). Учёному удалось выделить бациллу и вырастить чистую культуру — культуру, представленную одним видом микробов. Он заразил совершенно здоровое животное чистой культурой, вызвав у него сибирскую язву. Учёный понял, что создание чистых культур — залог успешного определения причин инфекции.

    Роберт Кох, как и его предшественники, выращивал бактерии в жидкой среде — мясных или зерновых отварах. Коху удалось получить чистую культуру бациллы сибирской язвы в жидком бульоне, но он искал другой метод. На это были веские причины. Если в бульон попадало несколько видов бактерий, они смешивались между собой и разделить их было чрезвычайно сложно. Приходилось не раз пересаживать бактерии. Из раствора, где нужных бактерий было больше всего, Кох брал маленькую капельку и переносил в свежий бульон. В новом бульоне посторонних бактерий было уже меньше, но следовало монотонно повторять эту операцию несколько раз, чтобы в результате в питательной среде оказался только один вид микробов.


    Роберт Кох (1843–1910) — немецкий микробиолог. Открыл бациллу сибирской язвы, холерный вибрион и туберкулёзную палочку (палочку Коха). В 1905 году удостоен Нобелевской премии по физиологии и медицине «за исследования и открытия, касающиеся лечения туберкулёза».


    До Роберта Коха исследователи наблюдали микроорганизмы бесцветными, что приводило к многочисленным ошибкам. Кох применил анилиновые красители, которые избирательно окрашивали только микробы. После опытов Коха учёные по всему миру стали изобретать методики окрашивания бактерий. Так, в 1884 году врач Ганс Кристиан Грам придумал метод окрашивания, который стал одним из основных для определения наличия и типа бактерий в определённом субстрате.

    Микробы очень маленькие (в среднем 0,5–5 мкм), не сильно отличаются внешне, что вызывает определённые трудности в их изучении. Для исследования нужно выделить микроб из окружающего мира, полного самыми разными микроорганизмами. Микробная клетка, попав на питательную среду, даёт потомство — сгусток одинаковых клеток, колонию, которую можно изучать как один микроорганизм. Оказалось, что, подобрав условия культивирования, можно получить в чистом виде клетки любого микроорганизма. А значит — дать ему имя, описать свойства, классифицировать. Благодаря этому открытию Роберта Коха, микробиология была выделена в самостоятельную науку.

    После доклада об открытии возбудителя сибирской язвы Роберта Коха пригласили заведовать лабораторией в микробиологическом институте в Берлине и предложили должность советника при министерстве здравоохранения. У Коха появилось хорошее оборудование, талантливые ассистенты и возможность решить загадку, которая давно его мучила. Было известно, что туберкулёз тоже вызывает какой-то микроб: тканями больного человека удавалось заразить здоровых животных. Коху удалось подобрать методику окрашивания препаратов тканей, чтобы разглядеть бактерию-возбудителя в микроскоп. Но его радость была недолгой — бактерия не желала расти на обычных питательных средах.


    Макроснимок колоний туберкулёзной палочки (Mycobacterium tuberculosis). Их отличает бесцветная неровная поверхность.

    Однажды учёный заметил брошенную на столе заплесневевшую картошку с обилием разноцветных пятнышек-колоний — серых, жёлтых, зелёных. Он собрал образцы с каждой колонии и увидел в микроскопе, что каждое пятнышко — это колония одного вида микробов! В жидкой среде микробы смешивались и разделить их было чрезвычайно сложно. А на твёрдой среде оставались на одном месте, размножались и давали чистую культуру!


    Случайное наблюдение Коха сделало революцию: свежий картофель стал одной из первых твёрдых сред для выращивания микроорганизмов. Однако такой питательный субстрат подходит не для всех микробов, поэтому поиски альтернативной твёрдой среды продолжались.

    Кох вновь с усердием принялся выращивать туберкулёзную культуру. На срезах картофеля бактерия не росла. Тогда он стал использовать желатин, чтобы превращать бульон в твёрдую питательную среду. После многих неудачных попыток Кох добавил в среду и кровяную сыворотку, чтобы воссоздать условия живого организма. Через 15 дней (небывало долго для бациллы сибирской язвы) на поверхности среды показались капельки колоний опасной туберкулёзной палочки.


    Микроорганизмы делятся каждые 20 минут, поэтому уже через 3 часа после пересаживания микробов на чашке Петри можно увидеть колонии, а через сутки количество бактерий в них исчисляется миллионами.

    Александр Флеминг придумал новый вид искусства — рисование бактериями на твёрдой среде. Флеминг, будучи членом художественного клуба Челси, изобрёл любительские акварели. Учёный рисовал бактериями изящных балерин, роскошные дома, солдатов. Создание картины требовало аккуратности: нужно не только найти бактерии с разными пигментами, но и подобрать время выращивания, чтобы одноцветные вырастали одновременно и не нарушали границы цвета.


    Американское сообщество микробиологии (ASM), вдохновившись примером Флеминга и его коллег, проводит с 2015 года фестиваль Agar Art Competition. ­Талантливые микробиологи и художники рисуют настоящие картины. Некоторые придумывают свои сюжеты, другие воспроизводят картины мастеров, например, «Звёздную ночь» Ван Гога.


    В 1928 году британский бактериолог Александр Флеминг обнаружил, что на агаре в одной из чашек Петри по соседству с бактериями выросла колония плесневых грибов. Бактериальные колонии вокруг плесневых побледнели — их клетки были разрушены. Флеминг выделил из плесневых грибов вещество, разрушающее клетки бактерий — пенициллин, первый антибиотик. Открытие Флеминга изменило не только медицинскую науку, но и судьбу многих, казалось бы, безнадёжных пациентов.

    В то время единственной лабораторной склянкой, которая годилась для выращивания микробов, была пробирка. Но обращение с ней требовало сноровки: если положить пробирку горизонтально — незастывшая среда прольётся, поставить под углом — может упасть и разбиться. Шанс заразиться опасной болезнью множился на глазах! Тогда Кох и его лаборанты придумали заливать питательную среду в чашки и накрывать высокими стеклянными колпаками. Но чтобы посмотреть на колонии, колпак приходилось снимать, а это прямой путь заражения. Тогда-то и наступил звёздный час одного из лаборантов — Юлиуса Петри. Он уменьшил высоту стенок чашки, в которой выращивали микробов, оставив невысокие бортики. А вместо огромного колпака накрыл ещё одной прозрачной чашкой — так наблюдать за колониями оказалось удобнее.

    Петри проработал под руководством Коха всего пару лет (1877–1879), но за это время кардинально повлиял на будущее микробиологии. Инновация Юлиуса Петри дала сильнейший толчок медицине и спасла миллионы жизней. После работы под началом Роберта Коха он возглавил санаторий Гоберсдорф — первый европейский центр для лечения больных туберкулёзом.

    В лаборатории Коха появилась не только чашка Петри, но и стандартное наполнение к ней — агаризованная питательная среда. Её предшественница — среда, содержащая желатин — легко плавилась при нагревании, как холодец, поставленный в тёплое место. Колонии на такой среде превращались в кашу.

    Среду на основе агара придумал ­ Уолтер Гессе, ещё один лаборант Коха. Он поступил на службу вместе с женой Фанни. Она не значилась сотрудником лаборатории, но выполняла работу научного иллюстратора — зарисовывала микроорганизмы, которые видела в микроскоп.

    Однажды Фанни приготовила желе. Гессе заметил, что оно не тает на солнце и сохраняет форму. Он выяснил, что основной компонент желе — агар-агар — вещество, которое добывают из красных и бурых водорослей. Уолтер заменил им стандартный желатин, и бактериальные питательные среды стали твёрже. Агар-­агар и сегодня используют для приготовления сред, но его особым образом очищают.


    Для определения эффективности антибиотиков в фармацевтичес­кой промышленности используют специальные тесты. Например, метод диффузии в агар. В чашки Петри засевают микроорганизмы. На засеянную поверхность на равном расстоянии друг от друга помещают диски, содержащие определённые дозы разных антибиотиков. Чем больше радиус зоны подавления роста, тем эффективнее препарат против данного микроорганизма.

    Сначала чашку Петри использовали только для выращивания культур клеток, но сейчас эта посуда применяется в разных областях науки. Например, на чашках Петри изучают эффективность антибиотиков, их используют для исследования безопасности пищевых продуктов и выращивания генно-инженерных бактерий, которые синтезируют необходимый больным диабетом инсулин.

    Чашки Петри делают разных размеров и из самых разных материалов — стекла, пластика и даже нержавеющей стали. Для работы учёный может подобрать подходящую.

    Читайте также: